Remote geochemical analysis: elemental and mineralogical composition
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Cambridge u.a.
Cambridge Univ. Press
1993
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Topics in remote sensing
4 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 594 S. Ill., graph. Darst., Kt. |
ISBN: | 0521402816 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008622621 | ||
003 | DE-604 | ||
005 | 20220919 | ||
007 | t | ||
008 | 940103s1993 abd| |||| 00||| eng d | ||
020 | |a 0521402816 |9 0-521-40281-6 | ||
035 | |a (OCoLC)246832255 | ||
035 | |a (DE-599)BVBBV008622621 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-703 |a DE-83 |a DE-188 |a DE-B16 | ||
082 | 0 | |a 551.9028 | |
084 | |a RB 10115 |0 (DE-625)142220:12621 |2 rvk | ||
084 | |a UQ 6400 |0 (DE-625)146562: |2 rvk | ||
084 | |a US 6400 |0 (DE-625)146721: |2 rvk | ||
084 | |a TH 4000 |0 (DE-625)162618: |2 rvk | ||
245 | 1 | 0 | |a Remote geochemical analysis |b elemental and mineralogical composition |c ed. by Carlé M. Pieters ... |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge u.a. |b Cambridge Univ. Press |c 1993 | |
300 | |a XXIII, 594 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Topics in remote sensing |v 4 | |
650 | 4 | |a Analytical geochemistry | |
650 | 4 | |a Geochemistry |x Remote sensing | |
650 | 4 | |a Geochemistry |x Use of |x Remote Sensing | |
650 | 0 | 7 | |a Geochemie |0 (DE-588)4020198-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fernerkundung |0 (DE-588)4016796-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geochemie |0 (DE-588)4020198-3 |D s |
689 | 0 | 1 | |a Fernerkundung |0 (DE-588)4016796-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pieters, Carlé M. |e Sonstige |4 oth | |
830 | 0 | |a Topics in remote sensing |v 4 |w (DE-604)BV004239637 |9 4 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005670047&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805078139420803072 |
---|---|
adam_text |
Titel: Remote geochemical analysis
Autor: Pieters, Carlé M.
Jahr: 1993
Contents
Contributors xv
Foreword xix
Preface and Acknowledgments xxiii
Technical and Scientific Background
Chapter 1: Origin of Electronic Spectra of Minerals in the Visible to
Near-Infrared Region 3
1.1. FEATURES OF ELECTRONIC SPECTRA 5
1.2. TYPES OF ELECTRONIC SPECTRA 6
1.2.1. Crystal Field Transitions 7
1.2.2. Metal-Metal Intervalence Charge Transfer Transitions 11
1.2.3. Oxygen-Metal Charge Transfer Transitions 14
1.3. SPECTRA OF PYROXENES 15
1.3.1. Pyroxene Crystal Structure 15
1.3.2. Spectra of Fe2+ in Pyroxenes 17
1.4. SPECTRA OF OUVINES 20
1.4.1. Olivine Crystal Structure 20
1.4.2. Spectra of Fe2+ in Olivines 20
1.5. SPECTRA OF FERRIC OXIDES 22
1.6. SPECTRA OF TITANIFEROUS MINERALS 24
1.7. SUMMARY 27
Chapter 2: Combined Theory of Reflectance and Emittance Spectroscopy 31
2.1. DERIVATION OF THE EMITTED RADIANCE 32
2.2. REFLECTANCES, EMISSIVITIES, AND KIRCHHOFF'S LAW 38
2.2.1. Bidirectional Reflectance and BRDF 38
2.2.2. Directional-Hemispherical Reflectance 38
2.2.3. Hemispherical-Directional Reflectance 38
2.2.4. Bihemispherical Reflectance 38
2.2.5. Directional Emissivity 39
2.2.6. Hemispherical Emissivity 39
2.2.7. Kirchhoffs Law 39
2.3. DISCUSSION 40
2.3.1. Emissivity 40
2.3.2. Band Contrast in Reflectance and Emittance 40
2.3.3. Radiative Equilibrium Temperature 41
Chapter 3: Ultraviolet, Visible, and Near-Infrared Reflectance
Spectroscopy: Laboratory Spectra of Geologic Materials 43
3.1. METHODS 44
3.1.1. Spectral Characterization of Individual Minerals and Compounds 44
3.1.2. Spectral Information in the Chemical and Mineralogical Literature 46
3.2. CAUSES OF ABSORPTIONS IN THE UWNIR 47
3.2.1. Vibrational Transitions 47
3.2.2. Electronic Transitions 50
3.3. SPECTRA OF PHASES OF PLANETARY INTEREST 52
3.3.1. Ices and Volatiles 52
3.3.2. Minerals 54
3.3.3. Metals 64
3.3.4. Organics 65
3.4. EFFECTS OF PHYSICAL PARAMETERS ON REFLECTANCE SPECTRA 68
3.4.1. Particle Size, Opaques, and Porosity 68
3.4.2. Temperature 69
3.4.3. Shocked Materials 70
3.4.4. Viewing Geometry 71
3.4.5. Mineral Mixtures 71
Chapter 4: Mid-Infrared Spectroscopy: Laboratory Data 79
4.1. DISCUSSION OF SPECTRAL FEATURES 80
4.1.1. Causes of Spectral Features 80
4.1.2. Spectral Features Associated with Surface Scattering—
Reststrahlen Bands 80
4. l .3. Spectral Features Associated with Volume Scattering-
Absorption Bands 81
4. l .4. Features Associated with a Change from Surface to Volume
Scattering—The Transparency Feature 82
4.1.5. Spectral Features Associated with Anomalous Dispersion—
The Christiansen Feature 83
4.2. USE OF LABORATORY REFLECTANCE SPECTRA TO PREDICT EMISSIVITY 83
4.2.1. Kirchhoff s Law 83
4.2.2. Effect of Ambient Pressure 84
4.2.3. Effect of Background Radiance 85
4.2.4. Effects of Other Environmental Factors 86
4.3. EXPERIMENTAL TECHNIQUES 86
4.3.1. Samples and Sample Preparation 86
4.3.2. Spectrometers for Measurement of Reflectance and Emittance 87
4.3.3. Measurement of Biconical Reflectance 87
4.3.4. Measurement of Directional Hemispherical Reflectance 88
4.4. RESULTS OF LABORATORY MEASUREMENTS 89
4.4.1. Mineral Spectra 89
4.4.2. Igneous Rock Spectra 90
4.4.3. Meteorite Spectra 91
4.5. INTERPRETATION OF SPECTRA 91
4.5.1. Interpretation of Solid Mineral Spectra 91
4.5.2. Interpretation of Powdered Mineral Spectra 92
4.5.3. interpretation of Solid Igneous Rock Spectra 93
4.5.4. Interpretation of Powdered Igneous Rock Spectra 94
4.5.5. Interpretation of Powdered Meteorite Spectra 96
Chapter 5: Thermal Emission Spectroscopy: Application to the
Earth and Mars 99
5.1. THEORETICAL BACKGROUND 99
5.1.1. Spectroscopy 99
5.1.2. Remote Sensing—Passive 102
5.1.3. Remote Sensing—Active 103
vi
5.2. APPLICATIONS 104
5.2.1. Terrestrial 104
5.2.2. Planetary 112
5.3. FUTURE REMOTE SENSING INSTRUMENTS AND MISSIONS 116
5.3.1. Terrestrial 116
5.3.2. Mars 116
5.3.3. Surface Composition 117
5.3.4. Atmospheric Aerosol Properties 117
5.3.5. Asteroids, Satellites, and Miscellaneous 118
Chapter 6: Imaging Spectroscopy of the Earth and Other
Solar System Bodies 121
6.1. IMAGING SPECTROMETERS FOR TERRESTRIAL REMOTE SENSING 125
6.1.1. Airborne Imaging Spectrometer 12 5
6.1.2. Airborne Visible/Infrared Imaging Spectrometer 127
6.1.3. Thermal Infrared Imaging Spectrometer 132
6.1.4. High-Resolution Imaging Spectrometer 132
6.1.5. Moderate-Resolution Imaging Spectrometer 134
6.2. IMAGING SPECTROMETERS FOR THE REMOTE SENSING OF OTHER
SOLAR SYSTEM BODIES 135
6.2.1. Past and Present Planetary Imaging Spectrometers 135
6.2.2. Imaging Spectrometers for Future Planetary Missions 137
6.3. TRENDS IN TECHNOLOGY FOR IMAGING SPECTROSCOPY 141
Chapter 7: Imaging Spectroscopy: Interpretation Based on
Spectral Mixture Analysis 14 5
7.1. IMAGING AND SPECTROSCOPY 145
7.1.1. Analytical Methods 145
7.1.2. A Strategy Based on Field Observations 148
7.2. SPECTRAL MIXTURE ANALYSIS 149
7.2.1. Image End Members 149
7.2.2. Fraction Images 153
7.2.3. Reference End Members 154
7.2.4. Linked Models 155
7.2.5. Narrow Absorption Bands 156
7.3. APPLICATIONS 158
7.3.1. Identifying Materials 158
7.3.2. Spatial Resolution and Image End Members 159
7.3.3. Detection of Change 162
7.3.4. Hierarchical Mixing Models 162
7.4. SUMMARY AND CONCLUSIONS 163
Chapter 8: Introduction to Planetary Remote Sensing
Gamma Ray Spectroscopy 16 7
8.1. SOURCES OF PLANETARY GAMMA RAYS 168
8.1.1. Natural Radioactivity 169
8.1.2. Cosmic-Ray-Produced Gamma Rays 169
8.2. TRANSPORT OF PLANETARY GAMMA RAYS 177
8.2.1. Calculation of the Emitted Gamma Ray Flux 177
8.2.2. Spatial Resolution 178
vii
8.3. EXPECTED PLANETARY GAMMA RAY FLUXES 179
8.4. CONCEPT VERIFICATION 180
8.4.1. Apollo Gamma Ray Spectrometers 1 8°
8.4.2. Simulation Experiments 181
8.5. GAMMA RAY/DETECTOR INTERACTIONS 182
8.6. GAMMA RAY DETECTORS 182
8.6.1. Scintillation Detectors 182
8.6.2. Solid State Detectors 183
8.7. INFORMATION EXTRACTION 187
8.7.1. Electronic Drift 187
8.7.2. Correction for Backgrounds 188
8.7.3. Pulse Height Counts to Photon Flux Conversion 190
8.7.4. Photon Flux to Composition Conversion 193
8.7.5. Graphical Presentations 195
Chapter 9: X-rqy Remote Sensing Techniques for Geochemical
Analysis of Planetary Surfaces 199
9.1. RADIATION SOURCES 199
91.1. Solar X-rays 199
9.1.2. Charged Particles 201
9.2. INSTRUMENTATION 202
92.1. The Apollo XRF System 202
92.2. Apollo Data Reduction 204
9.2.3. Apollo 15 and 16 XRF Results 205
9.3. REMOTE SENSING XRF IN THE FUTURE 210
9.4. CONCLUSION 211
Chapter 10: Planetary Neutron Spectroscopy from Orbit 213
10.1. NEUTRON PRODUCTION, MODERATION, AND TRANSPORT TO ORBIT 213
10.2. COMPUTATIONAL CHAIN REQUIRED TO SIMULATE LEAKAGE
NEUTRON ENERGY SPECTRA 215
10.3. SPACE NEUTRON DETECTORS 218
10.4. SIMULATION RESULTS 223
10.4.1. Uniform Stratigraphy 223
10.4.2. Vertical Stratigraphy 226
10.4.3. Horizontal Stratigraphy 227
10.5. DATA REDUCTION AND ERROR ANALYSIS 231
10.5.1. Instrumental Backgrounds 231
10.5.2. Count-Rate Inversion to Determine aT and ßT 231
10.5.3. Error Analysis 233
Chapter 11: Alpha-Particle Spectrometry of the Moon 235
11.1. APOLLO EXPERIMENT 236
11.1.1. Observations 236
11.1.2. Global Trends 236
11.1-3- Correlations with Topographical Features 239
11.2. INTERPRETATION: EVIDENCE FOR INTERNAL ACTIVITY 240
11.2.1. Summary of Results 240
11.2.2. Localization 240
vai
11.2.3. Correlation with Transient Lunar Phenomena 241
11.2.4. Correlation with Other Measurements 242
11.3. FUTURE APPLICATIONS OF ALPHA-PARTICLE SPECTROSCOPY 242
Applications and Measurements
Chapter 12: Geological Mapping Using Landsat Thematic Mapper Data
Over Oak-Hickory Forest, Arctic, and Hyperarid Terrains 247
12.1. BACKGROUND DISCUSSION 248
12.2. RELATIONSHIPS BETWEEN FOREST CANOPY REFLECTANCE PROPERTIES
AND SOILS IN THE OZARKS OF SOUTHEASTERN MISSOURI 250
12.3. MAPPING OF ARCHEAN TERRANES, SOUTHWESTERN GREENLAND 257
12.4. USE OF TM BAND RATIOS FOR LITHOLOGIC MAPPING IN THE
ARABIAN-NUBIAN SHIELD 262
12.5. LINEAR MIXING MODELS APPLIED TO TM DATA COVERING THE
AJJAJ SHEAR ZONE 274
12.6. SUMMARY AND IMPLICATIONS 280
Chapter i 3: Imaging Spectroscopy: New Directions for
Terrestrial Geology 283
13.1. ANALYSIS OF IMAGING SPECTROMETER DATA 286
13.1.1. Standard Image Processing 286
13.1.2. Specialized Processing 286
13.1.3. Display and Analysis 288
13.2. CASE HISTORIES 292
13.2.1. Northern Grapevine Mountains, Nevada: GERS Mark II, AIS,
and A VIRIS Mineral Mapping 293
13.2.2. Wind River/Bighorn Basins: AIS Stratigraphy/
Petroleum Exploration 296
13.2.3. Moses Rock Dike, Utah: AIS Mantle Composition/Tectonics 299
13.2.4. Pilot Mountain, North Carolina: GERS Mark II Geobotany/
Economic Geology 302
13.3. CONCLUSIONS/FUTURE PLANS FOR TERRESTRIAL IMAGING SPECTROSCOPY 303
Chapter 14: Compositional Diversity and Stratigraphy of the
Lunar Crust Derived from Reflectance Spectroscopy 309
14.1. MINERALOGY OF RETURNED LUNAR SAMPLES 310
14.1.1. Minerals, Rocks, Breccias, and Soils 310
14.1.2. Sampled Compositions 310
14.2. UNRESOLVED ISSUES RELATING TO LUNAR COMPOSITION 311
14.2.1. Character and Evolution of the Primitive Lunar Crust 311
14.2.2. Origin of the Moon and the Earth-Moon System 312
14.2.3. Thermal Evolution of the Moon and Lunar Volcanism 312
14.2.4. The Impact Record and Redistribution of Crustal Materials 312
14.3. COMPOSITIONAL INFORMATION DERIVED FROM VISIBLE
AND NEAR-INFRARED SPECTRA 312
14.3.1. Reflectance Properties of Lunar Minerals and Rocks 312
14.3.2. Soils and Alteration in the Lunar Environment 314
14.3.3. Mixtures 316
ix
14.4. SUMMARY OF NEARSIDE MARE BASALTS 317
14.4.1. Mare Craters 318
14.4.2. Mare Soils 319
14.4.3. Dark Mantling Material and Pyroclastic Deposits 320
14.4.4. Summary of Lunar Basalt Types 322
14.5. COMPLEXITY OF THE NEARSIDE LUNAR HIGHLAND CRUST 324
14.5.1. Craters as Probes to the Interior 324
14.5.2. Small Highland Craters 325
14.5.3. Large Craters with Central Peaks 327
14.6. IMPLICATIONS OF THE SCALE AND NATURE OF LUNAR HETEROGENEITY 334
14.6.1. Origin of the Megaregolith 334
14.6.2. Nature and Scale of Possible Plutons 335
14.6.3. Anorthosites and the Magma Ocean 335
14.6.4. Lunar Sample Bias and East-West Differences 335
14.7. ADVANCED SENSORS AND THE NEXT PHASE OF EXPLORATION 336
Chapter 15: Composition of the Moon as Determined from Orbit by
Gamma Ray Spectroscopy 341
15.1. THE APOLLO INSTRUMENT AND ITS PERFORMANCE 343
15.2. DATA REDUCTION 344
15.2.1. General 344
15.2.2. Response Function Analysis 344
15.2.3. Energy Band Analysis 346
15.2.4. Photopeak Analysis 346
15.2.5. Spatial Deconvolution 347
15.3. RESULTS 347
15.3.1. Mapping 347
15.3.2. Results of Response Function Analysis 350
15.3.3. Energy Band Analysis 351
15.3.4. Spatial Deconvolution 359
15.4. APPLICATIONS OF THE DATA 360
15.4.1. Geochemical Comparisons 360
15.4.2. Evidence of Volcanism 361
15.4.3. Identification of Rock Types 361
15.4.4. Crustal Composition and Thickness Derivations 362
15.4.5. Bulk Uranium Estimates 363
15.5. CONCLUDING REMARKS 363
Chapter 16: The Surface Composition of Mars as Inferred from
Spectroscopic Observations 367
16.1 MARTIAN MINERALOGY FROM VISIBLE AND NEAR-INFRARED
SPECTROSCOPY (0.35-2.55 ßm) 367
16.1.1. Introduction 367
16.1.2. General Reflectance Characteristics 368
16.1.3. Soils and Dust 369
16.1.4. Carbonates, Sulfates, and Nitrates 374
16.1.5. Igneous Crustal Material 375
16.1.6. Water Ice 377
16.2. MARTIAN MINERALOGY FROM MID-INFRARED SPECTRAL OBSERVATIONS
(2.5-5.0 pm) 378
16.2.1. Introduction 378
16.2.2. Hydrates and Hydroxylates 378
16.2.3. Other Volatiles 379
16.3. MARTIAN MINERALOGY FROM FAR-INFRARED
SPECTRAL OBSERVATIONS (5-25 fim) 381
16.3.1. Introduction 381
16.3.2. Observations and Interpretations 382
16.4. SUMMARY AND COMPARISON OF DIFFERENT WAVELENGTH REGIONS 388
16.4.1. Ferric Iron 388
16.4.2. Silicates 388
16.4.3. Carbonates, Sulfates, and Nitrates 389
Chapter 17: The Composition of Mars and Comets by Remote and
In Situ Gamma Ray Spectroscopy 395
17.1. BASIS OF THE TECHNIQUE 395
17.1.1. Sources of Neutrons 395
17.1.2. Sources of Gamma Rays 396
17.2. COLLECTION AND ANALYSIS OF GAMMA RAY DATA 396
17.2.1. Gamma Ray Detectors 396
17.2.2. Gamma Ray Spectra and Pulse-Height Analyzers 397
17.2.3. Data Analysis 397
17.3. THE MARS OBSERVER GRS 398
17.3.1. The Mission 398
17.3.2. The Instrument 398
17.3.3. Anticipated Results 401
17.3.4. Science 403
17.4. THE COMET PENETRATOR-LANDER GRS 404
17.4.1. The Mission 404
17.4.2. The Penetrator-Lander Vehicle 405
17.4.3. The GRS Instrument 405
17.4.4. Mission Operations 407
17.4.5. Anticipated Results 407
17.4.6. Science 409
Chapter 18: Gamma Ray Spectrometry of Mars 413
18.1. GAMMA RAY SPECTROMETRY FROM PHOBOS 2 414
18.2. GAMMA RAY SPECTROMETRIC EQUIPMENT ON PHOBOS 2 414
18.3. MEASURING GAMMA RADIATION OF MARS FROM PHOBOS 2 416
18.3.1. Measurements on the Earth-Mars Flight Trajectory 416
18.3.2. Measurements from Orbit 416
18.4. DATA PROCESSING 419
18.5. PRELIMINARY RESULTS 422
Chapter 19: Neutron Spectrometry 427
19.1. SCIENTIFIC OBJECTIVES 427
19.1.1. H, C, Fe, REE, Cl, B, and Li Content 42 7
19.1.2. Average Atomic Weight 427
19.1.3. Density 427
19.1.4. Joint Processing of Data from Neutron and
Gamma Ray Spectrometry 428
xi
19.2. MARS 428
19.3. THE MOON 428
19.4. MINOR BODIES 428
19.5. PHYSICS OF NEUTRON PRODUCTION 429
19.6. PRODUCTION RATE AND SPATIAL DISTRIBUTION OF NEUTRONS 430
19.7. CALCULATION OF THE NEUTRON FLUX IN THE VICINITY OF
MINOR BODIES 430
19.8. LEAKAGE NEUTRON FLUX DEPENDENCE ON WATER AND
CARBON CONTENT 431
19.9. DISTRIBUTION OF NEUTRONS IN THE REGOLITH SURFACE LAYER 432
19.10. MEASUREMENT TECHNIQUES 433
19.11. THE IPNM-3 DEVICE 433
19.12. ESTIMATE OF MEASURING TIME 433
19.13. CONCLUSION 435
Chapter 20: Asteroid Surface Compositions from Earth-based
Reflectance Specaoscopy 437
20.1. MINERALOGICAL INFORMATION IN REFLECTANCE AND EMISSION SPECTRA 437
20.1.1. Spectroscopy 43 7
20.1.2. Absorption Mechanisms 438
20.1.3. Spectral Characteristics 439
20.1.4. Mineral Mixtures 442
20.2. GENERAL CLASSES OF ASTEROIDAL SPECTRAL DATA 442
20.3. ANALYSIS OF ASTEROIDAL REFLECTANCE SPECTRA 443
20.3.1. Taxonomic Classifications 443
20.3.2. Matching Spectral Curves 445
20.3.3. Matching Spectral Features 445
20.3.4. Quantitative Spectral Interpretation 446
20.4. ASTEROID SURFACE MATERIAL CHARACTERIZATIONS 449
20.5. SUMMARY 450
Chapter21: Remote Sensing of Ices and Ice-Mineral Mixtures in the
Outer Solar System 455
21.1. ICES IN THE OUTER SOLAR SYSTEM 456
21.1.1. How Ices are Found 456
21.1.2. Where Ices are Found 458
21.2. VOLATILES ON SURFACES IN THE OUTER SOLAR SYSTEM 464
Active Surface Analyses
Chapter 22: Elemental Analysis of Extraterrestrial Surfaces by
Alpha-Particle and Radiation Sources 4 71
22.1. MAIN FEATURES OF THE ALPHA-PARTICLE TECHNIQUE OF
CHEMICAL ANALYSES 472
22.2. HISTORICAL COMMENTS 473
22.3. THE SURVEYOR ALPHA-PARTICLE INSTRUMENTS 474
22.4. THE X-RAY MODE OF THE ALPHA-PARTICLE INSTRUMENT 477
xü
22.5. CERTIFICATION OF THE ALPHA-PARTICLE TECHNIQUE OF
CHEMICAL ANALYSIS 479
22.6. COMPARISON WITH OTHER TECHNIQUES OF IN SITU ANALYSES 480
22.7. FUTURE DIRECTIONS 482
Chapter 23: Subsurface Nuclear Measurements for
Geochemical Analysis 485
23.1. GEOPHYSICAL LOGGING MEASUREMENTS 487
23.1.1. Gamma Ray Scattering 487
23.1.2. Neutron Scattering 488
23.2. SPECTROSCOPIC MEASUREMENTS 49O
23.2.1. Time-dependent Measurements 490
23.2.2. Energy-dependent Measurements 492
23.3. INSTRUMENTATION AND DATA ANALYSIS 494
23.3.1. Sources 494
23.3.2. Detectors 495
23.3.3. Electronics 498
23.3.4. Spectral Analysis 499
23.4. CONCLUSIONS 503
Chapter 24: Interpretation of Chemical Concentration Logs and
Applications in the Petroleum Industry 50 7
24.1. ELEMENTAL CONCENTRATIONS FROM SPECTROSCOPY MEASUREMENTS 508
24.1.1. Elemental Concentrations from Natural Activity Measurements 508
24.1.2. Elemental Concentration of Aluminum from Delayed
Neutron Activation 509
24.1.3. Absolute Elemental Concentrations from Prompt
Gamma Ray Measurements 511
24.1.4. Elemental Detectabilities 511
24.1.5. Calibration of Prompt Gamma Ray Measurements 513
24.1.6. Estimation of Magnesium from a Pe Measurement 514
24.1.7. Closure Model Verification 516
24.2. GEOLOGICAL CHARACTERIZATION USING GEOCHEMICAL LOGS 518
24.2.1. Geochemical Lithology 518
24.2.2. Sandstone Classification 519
24.2.3. Chemical Mineralogy 520
24.2.4. A Normative Mineral Analysis for Detrital Shaly Sands 521
24.2.5. Applicability of the Detrital Shaly Sands Model 527
24.3. INTERPRETATION OF PETROPHYSICAL PROPERTIES FROM MINERALOGY 528
24.3.1. Matrix Density and Porosity 528
24.3.2. Cation Exchange Capacity 530
24.3.3. Intrinsic Permeability 531
24.4. SOURCE ROCK EVALUATION 534
24.5. WELL-TO-WELL CORRELATION 534
24.6. CONCLUSIONS 535
Chapter 25: Mössbauer Spectral Characterization of Iron in Planetary
Surface Materials 539
25.1. ORIGIN OF THE MÖSSBAUER EFFECT 540
25.2. PARAMETERS FROM A MÖSSBAUER SPECTRUM 541
xHi
25.2.1. Isomer Shift 542
25.2.2. Quadrinole Splitting 543
25.2.3. Magnetic Splitting 544
25.3. MÖSSBAUER SPECTRA OF NANOCRYSTALLINE FERRIC OXIDE PHASES 548
25.3.1. Hematite 548
25.3.2. Goethite 548
25.3.3. Ferrihydrite ¦ 549
25.4. OXIDATIVE WEATHERING OF METEORITES 550
25.5. OXIDATIVE WEATHERING ON MARS 550
25.6. BACKSCATTER MÖSSBAUER SPECTRA: BASIS FOR REMOTE
SURFACE ANALYSIS 552
25.7 SUMMARY 554
Chapter 26: Mass Spectrometric In Situ Analysis of
Solid-state Extraterrestrial Samples 557
26.1. WHAT TYPE OF MASS SPECTROMETRY 558
26.1.1. Ion Formation 558
26.1.2. Spectrometer Types 559
26.1.3. Detectors 561
26.2. TYPES OF RESULTS EXPECTED AND ACTUALLY OBTAINED 562
26.2.1. The Viking Molecular Analysis Experiment 562
26.2.2. The Helios Dust Impact Mass Spectrometer 563
26.2.3. The Vega and Giotto Dust Impact Mass Spectrometers 563
Chapter 27: Remote Surface Chemical Analysis Techniques for
Small Bodies of the Solar System Without Atmosphere 569
27.1 ACTIVE REMOTE ANALYSIS TECHNIQUES 569
2 7.1.1. Electron-Induced Spectroscopy 570
27.1.2. Ion-induced Mass Spectrometry 570
27.1.3. Laser-Induced Mass Spectrometry 570
27.1.4. Limitations for Application of Methods 570
27.2. REMOTE LASER MASS-ANALYZER 571
27.2.1. Ion Reflector 572
27.2.2. Laser and Focusing System 572
27.3. EXPERIMENT UMA-D 572
27.3.1. Laboratory Tests of Remote Laser Method 574
27.3.2. Data Interpretation 574
27.4. CONCLUSIONS AND OUTLOOK 576
Subject Index 579
xiv |
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV008622621 |
classification_rvk | RB 10115 UQ 6400 US 6400 TH 4000 |
ctrlnum | (OCoLC)246832255 (DE-599)BVBBV008622621 |
dewey-full | 551.9028 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 551 - Geology, hydrology, meteorology |
dewey-raw | 551.9028 |
dewey-search | 551.9028 |
dewey-sort | 3551.9028 |
dewey-tens | 550 - Earth sciences |
discipline | Geologie / Paläontologie Physik Geographie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV008622621</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220919</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">940103s1993 abd| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521402816</subfield><subfield code="9">0-521-40281-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246832255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008622621</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-B16</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">551.9028</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10115</subfield><subfield code="0">(DE-625)142220:12621</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UQ 6400</subfield><subfield code="0">(DE-625)146562:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">US 6400</subfield><subfield code="0">(DE-625)146721:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">TH 4000</subfield><subfield code="0">(DE-625)162618:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Remote geochemical analysis</subfield><subfield code="b">elemental and mineralogical composition</subfield><subfield code="c">ed. by Carlé M. Pieters ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge u.a.</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 594 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Topics in remote sensing</subfield><subfield code="v">4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical geochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geochemistry</subfield><subfield code="x">Remote sensing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geochemistry</subfield><subfield code="x">Use of</subfield><subfield code="x">Remote Sensing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geochemie</subfield><subfield code="0">(DE-588)4020198-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fernerkundung</subfield><subfield code="0">(DE-588)4016796-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geochemie</subfield><subfield code="0">(DE-588)4020198-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fernerkundung</subfield><subfield code="0">(DE-588)4016796-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pieters, Carlé M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Topics in remote sensing</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV004239637</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005670047&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV008622621 |
illustrated | Illustrated |
indexdate | 2024-07-20T06:24:20Z |
institution | BVB |
isbn | 0521402816 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005670047 |
oclc_num | 246832255 |
open_access_boolean | |
owner | DE-12 DE-703 DE-83 DE-188 DE-B16 |
owner_facet | DE-12 DE-703 DE-83 DE-188 DE-B16 |
physical | XXIII, 594 S. Ill., graph. Darst., Kt. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Topics in remote sensing |
series2 | Topics in remote sensing |
spelling | Remote geochemical analysis elemental and mineralogical composition ed. by Carlé M. Pieters ... 1. publ. Cambridge u.a. Cambridge Univ. Press 1993 XXIII, 594 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Topics in remote sensing 4 Analytical geochemistry Geochemistry Remote sensing Geochemistry Use of Remote Sensing Geochemie (DE-588)4020198-3 gnd rswk-swf Fernerkundung (DE-588)4016796-3 gnd rswk-swf Geochemie (DE-588)4020198-3 s Fernerkundung (DE-588)4016796-3 s DE-604 Pieters, Carlé M. Sonstige oth Topics in remote sensing 4 (DE-604)BV004239637 4 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005670047&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Remote geochemical analysis elemental and mineralogical composition Topics in remote sensing Analytical geochemistry Geochemistry Remote sensing Geochemistry Use of Remote Sensing Geochemie (DE-588)4020198-3 gnd Fernerkundung (DE-588)4016796-3 gnd |
subject_GND | (DE-588)4020198-3 (DE-588)4016796-3 |
title | Remote geochemical analysis elemental and mineralogical composition |
title_auth | Remote geochemical analysis elemental and mineralogical composition |
title_exact_search | Remote geochemical analysis elemental and mineralogical composition |
title_full | Remote geochemical analysis elemental and mineralogical composition ed. by Carlé M. Pieters ... |
title_fullStr | Remote geochemical analysis elemental and mineralogical composition ed. by Carlé M. Pieters ... |
title_full_unstemmed | Remote geochemical analysis elemental and mineralogical composition ed. by Carlé M. Pieters ... |
title_short | Remote geochemical analysis |
title_sort | remote geochemical analysis elemental and mineralogical composition |
title_sub | elemental and mineralogical composition |
topic | Analytical geochemistry Geochemistry Remote sensing Geochemistry Use of Remote Sensing Geochemie (DE-588)4020198-3 gnd Fernerkundung (DE-588)4016796-3 gnd |
topic_facet | Analytical geochemistry Geochemistry Remote sensing Geochemistry Use of Remote Sensing Geochemie Fernerkundung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=005670047&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004239637 |
work_keys_str_mv | AT pieterscarlem remotegeochemicalanalysiselementalandmineralogicalcomposition |