Effective polynomial computation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Kluwer
1993
|
Schriftenreihe: | The Kluwer international series in engineering and computer science
241 |
Schlagworte: | |
Beschreibung: | XI, 363 S. |
ISBN: | 0792393759 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV008280130 | ||
003 | DE-604 | ||
005 | 20240131 | ||
007 | t| | ||
008 | 931019s1993 xx |||| 00||| eng d | ||
020 | |a 0792393759 |c hc |9 0-7923-9375-9 | ||
035 | |a (OCoLC)246511854 | ||
035 | |a (DE-599)BVBBV008280130 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-29T |a DE-384 |a DE-91G |a DE-703 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA241 | |
082 | 0 | |a 512.9/2/0285 |2 20 | |
084 | |a SK 230 |0 (DE-625)143225: |2 rvk | ||
084 | |a 68Q40 |2 msc | ||
084 | |a MAT 663f |2 stub | ||
084 | |a MAT 266f |2 stub | ||
084 | |a DAT 532f |2 stub | ||
084 | |a 12Y05 |2 msc | ||
100 | 1 | |a Zippel, Richard E. |d 1952- |e Verfasser |0 (DE-588)172474485 |4 aut | |
245 | 1 | 0 | |a Effective polynomial computation |c by Richard Zippel |
264 | 1 | |a Boston [u.a.] |b Kluwer |c 1993 | |
300 | |a XI, 363 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a The Kluwer international series in engineering and computer science |v 241 | |
650 | 7 | |a Algorithmes |2 ram | |
650 | 7 | |a Polynômes - Informatique |2 ram | |
650 | 7 | |a algorithme Euclide |2 inriac | |
650 | 7 | |a algorithme Hensel |2 inriac | |
650 | 7 | |a algèbre polynomiale |2 inriac | |
650 | 7 | |a factorisation |2 inriac | |
650 | 7 | |a fonction arithmétique |2 inriac | |
650 | 7 | |a fraction continue |2 inriac | |
650 | 7 | |a interpolation |2 inriac | |
650 | 7 | |a polynôme |2 inriac | |
650 | 7 | |a série formelle |2 inriac | |
650 | 7 | |a série puissance |2 inriac | |
650 | 7 | |a treillis |2 inriac | |
650 | 7 | |a équation diophantienne |2 inriac | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Polynomials |x Data processing | |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynomalgebra |0 (DE-588)4297306-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynomalgebra |0 (DE-588)4297306-5 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 1 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 1 | |5 DE-188 | |
830 | 0 | |a The Kluwer international series in engineering and computer science |v 241 |w (DE-604)BV023545171 |9 241 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-005471103 |
Datensatz im Suchindex
_version_ | 1823676198552600576 |
---|---|
adam_text | |
any_adam_object | |
author | Zippel, Richard E. 1952- |
author_GND | (DE-588)172474485 |
author_facet | Zippel, Richard E. 1952- |
author_role | aut |
author_sort | Zippel, Richard E. 1952- |
author_variant | r e z re rez |
building | Verbundindex |
bvnumber | BV008280130 |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 |
callnumber-search | QA241 |
callnumber-sort | QA 3241 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 230 |
classification_tum | MAT 663f MAT 266f DAT 532f |
ctrlnum | (OCoLC)246511854 (DE-599)BVBBV008280130 |
dewey-full | 512.9/2/0285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.9/2/0285 |
dewey-search | 512.9/2/0285 |
dewey-sort | 3512.9 12 3285 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV008280130</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240131</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">931019s1993 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0792393759</subfield><subfield code="c">hc</subfield><subfield code="9">0-7923-9375-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)246511854</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV008280130</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA241</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.9/2/0285</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 230</subfield><subfield code="0">(DE-625)143225:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">68Q40</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 663f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 266f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 532f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12Y05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zippel, Richard E.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172474485</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effective polynomial computation</subfield><subfield code="c">by Richard Zippel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Kluwer</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 363 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">The Kluwer international series in engineering and computer science</subfield><subfield code="v">241</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithmes</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynômes - Informatique</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithme Euclide</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algorithme Hensel</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algèbre polynomiale</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">factorisation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">fonction arithmétique</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">fraction continue</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">interpolation</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">polynôme</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">série formelle</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">série puissance</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">treillis</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">équation diophantienne</subfield><subfield code="2">inriac</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomials</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynomalgebra</subfield><subfield code="0">(DE-588)4297306-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynomalgebra</subfield><subfield code="0">(DE-588)4297306-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">The Kluwer international series in engineering and computer science</subfield><subfield code="v">241</subfield><subfield code="w">(DE-604)BV023545171</subfield><subfield code="9">241</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-005471103</subfield></datafield></record></collection> |
id | DE-604.BV008280130 |
illustrated | Not Illustrated |
indexdate | 2025-02-10T13:12:31Z |
institution | BVB |
isbn | 0792393759 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-005471103 |
oclc_num | 246511854 |
open_access_boolean | |
owner | DE-739 DE-29T DE-384 DE-91G DE-BY-TUM DE-703 DE-83 DE-11 DE-188 |
owner_facet | DE-739 DE-29T DE-384 DE-91G DE-BY-TUM DE-703 DE-83 DE-11 DE-188 |
physical | XI, 363 S. |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Kluwer |
record_format | marc |
series | The Kluwer international series in engineering and computer science |
series2 | The Kluwer international series in engineering and computer science |
spelling | Zippel, Richard E. 1952- Verfasser (DE-588)172474485 aut Effective polynomial computation by Richard Zippel Boston [u.a.] Kluwer 1993 XI, 363 S. txt rdacontent n rdamedia nc rdacarrier The Kluwer international series in engineering and computer science 241 Algorithmes ram Polynômes - Informatique ram algorithme Euclide inriac algorithme Hensel inriac algèbre polynomiale inriac factorisation inriac fonction arithmétique inriac fraction continue inriac interpolation inriac polynôme inriac série formelle inriac série puissance inriac treillis inriac équation diophantienne inriac Datenverarbeitung Polynomials Data processing Polynom (DE-588)4046711-9 gnd rswk-swf Polynomalgebra (DE-588)4297306-5 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Polynomalgebra (DE-588)4297306-5 s Algorithmus (DE-588)4001183-5 s DE-604 Polynom (DE-588)4046711-9 s Computeralgebra (DE-588)4010449-7 s DE-188 The Kluwer international series in engineering and computer science 241 (DE-604)BV023545171 241 |
spellingShingle | Zippel, Richard E. 1952- Effective polynomial computation The Kluwer international series in engineering and computer science Algorithmes ram Polynômes - Informatique ram algorithme Euclide inriac algorithme Hensel inriac algèbre polynomiale inriac factorisation inriac fonction arithmétique inriac fraction continue inriac interpolation inriac polynôme inriac série formelle inriac série puissance inriac treillis inriac équation diophantienne inriac Datenverarbeitung Polynomials Data processing Polynom (DE-588)4046711-9 gnd Polynomalgebra (DE-588)4297306-5 gnd Computeralgebra (DE-588)4010449-7 gnd Algorithmus (DE-588)4001183-5 gnd |
subject_GND | (DE-588)4046711-9 (DE-588)4297306-5 (DE-588)4010449-7 (DE-588)4001183-5 |
title | Effective polynomial computation |
title_auth | Effective polynomial computation |
title_exact_search | Effective polynomial computation |
title_full | Effective polynomial computation by Richard Zippel |
title_fullStr | Effective polynomial computation by Richard Zippel |
title_full_unstemmed | Effective polynomial computation by Richard Zippel |
title_short | Effective polynomial computation |
title_sort | effective polynomial computation |
topic | Algorithmes ram Polynômes - Informatique ram algorithme Euclide inriac algorithme Hensel inriac algèbre polynomiale inriac factorisation inriac fonction arithmétique inriac fraction continue inriac interpolation inriac polynôme inriac série formelle inriac série puissance inriac treillis inriac équation diophantienne inriac Datenverarbeitung Polynomials Data processing Polynom (DE-588)4046711-9 gnd Polynomalgebra (DE-588)4297306-5 gnd Computeralgebra (DE-588)4010449-7 gnd Algorithmus (DE-588)4001183-5 gnd |
topic_facet | Algorithmes Polynômes - Informatique algorithme Euclide algorithme Hensel algèbre polynomiale factorisation fonction arithmétique fraction continue interpolation polynôme série formelle série puissance treillis équation diophantienne Datenverarbeitung Polynomials Data processing Polynom Polynomalgebra Computeralgebra Algorithmus |
volume_link | (DE-604)BV023545171 |
work_keys_str_mv | AT zippelricharde effectivepolynomialcomputation |