Euclidean geometry and convexity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
MacGraw-Hill
1966
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV,265 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV007123269 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 930421s1966 |||| 00||| eng d | ||
035 | |a (OCoLC)528508 | ||
035 | |a (DE-599)BVBBV007123269 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-91G |a DE-83 |a DE-188 | ||
050 | 0 | |a QA473 | |
082 | 0 | |a 513.5 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 52A20 |2 msc | ||
084 | |a 51M05 |2 msc | ||
100 | 1 | |a Benson, Russell V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Euclidean geometry and convexity |
264 | 1 | |a New York |b MacGraw-Hill |c 1966 | |
300 | |a XIV,265 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Cuerpos convexos | |
650 | 4 | |a Convex bodies | |
650 | 4 | |a Geometry, Modern | |
650 | 0 | 7 | |a Konvexität |0 (DE-588)4114284-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Euklidische Geometrie |0 (DE-588)4137555-5 |D s |
689 | 0 | 1 | |a Konvexität |0 (DE-588)4114284-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004539222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-004539222 |
Datensatz im Suchindex
_version_ | 1804121313896300544 |
---|---|
adam_text | CONTENTS
Preface vii
To the instructor xi
I BASIC CONCEPTS
Sec. 1 Notation and Terminology 2
Sec. 2 Length of a Curve 5
Sec. 3 Plane Area 8
Sec. 4 Surface Area and Volume 19
Sec. 5 Elementary Topology 26
Mm CONVEX BODIES
Sec. 6 Basic Properties of Convex Bodies 32
Sec. 7 Plane Convex Bodies 37
Sec. 8 Convex Bodies in Space 43
Sec. 9 Helly s Theorem 50
Sec. 10 Sets of Constant Width 69
O TRANSFORMATIONS
Sec. 11 Transformation Groups 69
Sec. 12 Euclidean Motions 75
Sec. 13 Similarities 84
Sec. 14 Vector Addition of Sets 89
Sec. 15 Motions and Decompositions 99
Sec. 16 Duality 1H
T EXTREMUM PROBLEMS
Sec. 17 The Isoperimetric Problem 126
Sec. 18 Blaschke s Selection Theorem 131
Sec. 19 Surface Area and Mixed Volumes 138
Sec. 20 Symmetrization 148
zui
jdv CONTENTS
Sec. 21 Convex Functions 156
Sec. 22 Geometric Inequalities 163
J EUCLIDEAN n DIMENSIONAL SPACE
Sec. 23 Definition of En 176
Sec. 24 Measurement in En 181
Sec. 25 Convexity in En 192
Sec. 26 Transformations in J£n iSS
Sec. 27 Linear Programming #00
0 MINKOWSKI GEOMETRY
Sec. 28 Metric Spaces 216
Sec. 29 The Minkowski Plane 225
Sec. 30 n dimensional Minkowski Space 239
Appendix 1 249
Appendix 2 252
Bibliography 254
Index 257
|
any_adam_object | 1 |
author | Benson, Russell V. |
author_facet | Benson, Russell V. |
author_role | aut |
author_sort | Benson, Russell V. |
author_variant | r v b rv rvb |
building | Verbundindex |
bvnumber | BV007123269 |
callnumber-first | Q - Science |
callnumber-label | QA473 |
callnumber-raw | QA473 |
callnumber-search | QA473 |
callnumber-sort | QA 3473 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)528508 (DE-599)BVBBV007123269 |
dewey-full | 513.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 513 - Arithmetic |
dewey-raw | 513.5 |
dewey-search | 513.5 |
dewey-sort | 3513.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01403nam a2200409 c 4500</leader><controlfield tag="001">BV007123269</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930421s1966 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)528508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV007123269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">513.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52A20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51M05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benson, Russell V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euclidean geometry and convexity</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">MacGraw-Hill</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV,265 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuerpos convexos</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex bodies</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Modern</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Euklidische Geometrie</subfield><subfield code="0">(DE-588)4137555-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004539222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004539222</subfield></datafield></record></collection> |
id | DE-604.BV007123269 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:56:00Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004539222 |
oclc_num | 528508 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 |
physical | XIV,265 S. |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | MacGraw-Hill |
record_format | marc |
spelling | Benson, Russell V. Verfasser aut Euclidean geometry and convexity New York MacGraw-Hill 1966 XIV,265 S. txt rdacontent n rdamedia nc rdacarrier Cuerpos convexos Convex bodies Geometry, Modern Konvexität (DE-588)4114284-6 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 gnd rswk-swf Euklidische Geometrie (DE-588)4137555-5 s Konvexität (DE-588)4114284-6 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004539222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Benson, Russell V. Euclidean geometry and convexity Cuerpos convexos Convex bodies Geometry, Modern Konvexität (DE-588)4114284-6 gnd Euklidische Geometrie (DE-588)4137555-5 gnd |
subject_GND | (DE-588)4114284-6 (DE-588)4137555-5 |
title | Euclidean geometry and convexity |
title_auth | Euclidean geometry and convexity |
title_exact_search | Euclidean geometry and convexity |
title_full | Euclidean geometry and convexity |
title_fullStr | Euclidean geometry and convexity |
title_full_unstemmed | Euclidean geometry and convexity |
title_short | Euclidean geometry and convexity |
title_sort | euclidean geometry and convexity |
topic | Cuerpos convexos Convex bodies Geometry, Modern Konvexität (DE-588)4114284-6 gnd Euklidische Geometrie (DE-588)4137555-5 gnd |
topic_facet | Cuerpos convexos Convex bodies Geometry, Modern Konvexität Euklidische Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004539222&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bensonrussellv euclideangeometryandconvexity |