Characterizing k-dimensional universal Menger compacta:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, RI
1988
|
Schriftenreihe: | American Mathematical Society: Memoirs of the American Mathematical Society
380 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Volume 71, Number 380 (second of 5 numbers) |
Beschreibung: | IV, 110 S. |
ISBN: | 0821824430 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV006400849 | ||
003 | DE-604 | ||
005 | 20150812 | ||
007 | t | ||
008 | 930210s1988 |||| 00||| eng d | ||
020 | |a 0821824430 |9 0-8218-2443-0 | ||
035 | |a (OCoLC)17105732 | ||
035 | |a (DE-599)BVBBV006400849 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-355 |a DE-824 |a DE-12 |a DE-384 |a DE-91G |a DE-188 |a DE-29T |a DE-83 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 510 |2 19 | |
082 | 0 | |a 514/.3 |2 19 | |
100 | 1 | |a Bestvina, Mladen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Characterizing k-dimensional universal Menger compacta |c Mladen Bestvina |
264 | 1 | |a Providence, RI |c 1988 | |
300 | |a IV, 110 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 380 | |
500 | |a Volume 71, Number 380 (second of 5 numbers) | ||
650 | 7 | |a Espacos Metricos |2 larpcal | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Metric spaces | |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | 1 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Topologische Mannigfaltigkeit |0 (DE-588)4185712-4 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a American Mathematical Society: Memoirs of the American Mathematical Society |v 380 |w (DE-604)BV008000141 |9 380 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004053409&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-004053409 |
Datensatz im Suchindex
_version_ | 1804120649406349312 |
---|---|
adam_text | TABLE OF CONTENTS
INTRODUCTION 1
DEFINITIONS AND NOTATION 4
1. PARTITIONS 6
1.1. Partitions on Compact PL Manifolds (With Boundary) 6
1.2. The Standard Construction of the Universal ^ Dimensional
Menger Space // and // Manifolds 15
1.3. A Combinatorial Characterization of // 16
2. BASIC MOVES 25
2.1. On LC*~ Spaces and (/V* Maps 25
2.2. The Isotopy Move and Verification of Axiom 1 31
2.3. Absorbing, Maps and Basic Properties of // Manifolds 34
2.4. Building Partitions and Associated Maps 38
2.5. Connecting Intersections 42
2.6. Correct Ordering 46
2.7. Increasing the Connectivity of Partition Elements 50
2.8 Some Easy Consequences 58
3. THE Z SET UNKNOTTING THEOREM 65
3.1. The Z set Unknotting Theorem 65
3.2. Homogeneity of // 72
4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS 74
iv TABLE OF CONTENTS
4.1. The Z set Shrinking Theorem 74
4.2. The o^Z set Shrinking Theorem 77
4.3. The Main Shrinking Theorem 84
5. THE CHARACTERIZATION THEOREM 89
5.1. The Resolution Theorem 89
5.2. The Characterization Theorem 97
6. NONCOMPACT MENGER MANIFOLDS 100
APPENDIX 104
LIST OF REFERENCES 107
|
any_adam_object | 1 |
author | Bestvina, Mladen |
author_facet | Bestvina, Mladen |
author_role | aut |
author_sort | Bestvina, Mladen |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV006400849 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
ctrlnum | (OCoLC)17105732 (DE-599)BVBBV006400849 |
dewey-full | 510 514/.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 514 - Topology |
dewey-raw | 510 514/.3 |
dewey-search | 510 514/.3 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01908nam a2200469 cb4500</leader><controlfield tag="001">BV006400849</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150812 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">930210s1988 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0821824430</subfield><subfield code="9">0-8218-2443-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)17105732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV006400849</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.3</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bestvina, Mladen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterizing k-dimensional universal Menger compacta</subfield><subfield code="c">Mladen Bestvina</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, RI</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IV, 110 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">380</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Volume 71, Number 380 (second of 5 numbers)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Espacos Metricos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metric spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4185712-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">American Mathematical Society: Memoirs of the American Mathematical Society</subfield><subfield code="v">380</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">380</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004053409&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-004053409</subfield></datafield></record></collection> |
id | DE-604.BV006400849 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:45:26Z |
institution | BVB |
isbn | 0821824430 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-004053409 |
oclc_num | 17105732 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-824 DE-12 DE-384 DE-91G DE-BY-TUM DE-188 DE-29T DE-83 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-824 DE-12 DE-384 DE-91G DE-BY-TUM DE-188 DE-29T DE-83 |
physical | IV, 110 S. |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
record_format | marc |
series | American Mathematical Society: Memoirs of the American Mathematical Society |
series2 | American Mathematical Society: Memoirs of the American Mathematical Society |
spelling | Bestvina, Mladen Verfasser aut Characterizing k-dimensional universal Menger compacta Mladen Bestvina Providence, RI 1988 IV, 110 S. txt rdacontent n rdamedia nc rdacarrier American Mathematical Society: Memoirs of the American Mathematical Society 380 Volume 71, Number 380 (second of 5 numbers) Espacos Metricos larpcal Manifolds (Mathematics) Metric spaces Metrischer Raum (DE-588)4169745-5 gnd rswk-swf Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Metrischer Raum (DE-588)4169745-5 s Mannigfaltigkeit (DE-588)4037379-4 s DE-604 Topologische Mannigfaltigkeit (DE-588)4185712-4 s American Mathematical Society: Memoirs of the American Mathematical Society 380 (DE-604)BV008000141 380 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004053409&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bestvina, Mladen Characterizing k-dimensional universal Menger compacta American Mathematical Society: Memoirs of the American Mathematical Society Espacos Metricos larpcal Manifolds (Mathematics) Metric spaces Metrischer Raum (DE-588)4169745-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
subject_GND | (DE-588)4169745-5 (DE-588)4185712-4 (DE-588)4037379-4 |
title | Characterizing k-dimensional universal Menger compacta |
title_auth | Characterizing k-dimensional universal Menger compacta |
title_exact_search | Characterizing k-dimensional universal Menger compacta |
title_full | Characterizing k-dimensional universal Menger compacta Mladen Bestvina |
title_fullStr | Characterizing k-dimensional universal Menger compacta Mladen Bestvina |
title_full_unstemmed | Characterizing k-dimensional universal Menger compacta Mladen Bestvina |
title_short | Characterizing k-dimensional universal Menger compacta |
title_sort | characterizing k dimensional universal menger compacta |
topic | Espacos Metricos larpcal Manifolds (Mathematics) Metric spaces Metrischer Raum (DE-588)4169745-5 gnd Topologische Mannigfaltigkeit (DE-588)4185712-4 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd |
topic_facet | Espacos Metricos Manifolds (Mathematics) Metric spaces Metrischer Raum Topologische Mannigfaltigkeit Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=004053409&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT bestvinamladen characterizingkdimensionaluniversalmengercompacta |