Generalized harmonic analysis and Tauberian theorems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, Mass.
MIT Press
1966
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 242 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV005693915 | ||
003 | DE-604 | ||
005 | 20180612 | ||
007 | t | ||
008 | 921028s1966 |||| 00||| eng d | ||
035 | |a (OCoLC)529811 | ||
035 | |a (DE-599)BVBBV005693915 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-355 |a DE-29T | ||
050 | 0 | |a QA403 | |
082 | 0 | |a 517.5 | |
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Wiener, Norbert |d 1894-1964 |e Verfasser |0 (DE-588)118632558 |4 aut | |
245 | 1 | 0 | |a Generalized harmonic analysis and Tauberian theorems |
264 | 1 | |a Cambridge, Mass. |b MIT Press |c 1966 | |
300 | |a 242 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Analise Harmonica |2 larpcal | |
650 | 4 | |a Analyse harmonique | |
650 | 7 | |a Harmonische analyse |2 gtt | |
650 | 7 | |a Tauber-ontwikkeling |2 gtt | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Tauberian theorems | |
650 | 0 | 7 | |a Tauber-Sätze |g Zahlentheorie |0 (DE-588)4369582-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Tauber-Sätze |g Zahlentheorie |0 (DE-588)4369582-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003556299&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-003556299 |
Datensatz im Suchindex
_version_ | 1804119881037119488 |
---|---|
adam_text | GENERALIZED HARMONIC ANALYSIS1
Page
Introduction 2
Chapter I. Precursors op the Present Theory
1. Plancherel s theorem 4
2. Schuster s periodogram analysis 10
Chapter II. Spectra
3. The spectrum of an arbitrary function of a single variable 16
4. The total spectral intensity 21
5. Tauberian theorems and spectral intensity 25
6. Bochner s generalizations of harmonic analysis and their
spectrum theories 37
7. The Hahn generalization of harmonic analysis 48
Chapter III. Extensions of Spectrum Theory
8. Harmonic analysis in more than one dimension 56
9. Coherency matrices 66
10. Harmonic analysis and transformation groups 79
Chapter IV. Examples of Functions with Spectra
11. Examples of functions with continuous spectra 85
12. Spectra depending on an infinite sequence of choices 94
13. Spectra and integration in function space 98
Chapter V. Almost Periodic Functions
14. The spectrum of an almost periodic function 118
15. The Parseval theorem for almost periodic functions 122
16. The Weierstrass theorem for almost periodic functions 123
17. Certain generalizations of almost periodic functions 126
Reprinted from Acta Math., 55, 1930, pp. 117 258. (Courtesy of the Institut
Mittag Leffler.)
1
|
any_adam_object | 1 |
author | Wiener, Norbert 1894-1964 |
author_GND | (DE-588)118632558 |
author_facet | Wiener, Norbert 1894-1964 |
author_role | aut |
author_sort | Wiener, Norbert 1894-1964 |
author_variant | n w nw |
building | Verbundindex |
bvnumber | BV005693915 |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403 |
callnumber-search | QA403 |
callnumber-sort | QA 3403 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 450 |
ctrlnum | (OCoLC)529811 (DE-599)BVBBV005693915 |
dewey-full | 517.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 517 - [Unassigned] |
dewey-raw | 517.5 |
dewey-search | 517.5 |
dewey-sort | 3517.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01731nam a2200469 c 4500</leader><controlfield tag="001">BV005693915</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180612 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">921028s1966 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)529811</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005693915</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA403</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">517.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiener, Norbert</subfield><subfield code="d">1894-1964</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118632558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized harmonic analysis and Tauberian theorems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">1966</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">242 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analise Harmonica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse harmonique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonische analyse</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Tauber-ontwikkeling</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tauberian theorems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tauber-Sätze</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4369582-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Tauber-Sätze</subfield><subfield code="g">Zahlentheorie</subfield><subfield code="0">(DE-588)4369582-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003556299&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003556299</subfield></datafield></record></collection> |
id | DE-604.BV005693915 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:33:14Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003556299 |
oclc_num | 529811 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-29T |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-29T |
physical | 242 S. |
publishDate | 1966 |
publishDateSearch | 1966 |
publishDateSort | 1966 |
publisher | MIT Press |
record_format | marc |
spelling | Wiener, Norbert 1894-1964 Verfasser (DE-588)118632558 aut Generalized harmonic analysis and Tauberian theorems Cambridge, Mass. MIT Press 1966 242 S. txt rdacontent n rdamedia nc rdacarrier Analise Harmonica larpcal Analyse harmonique Harmonische analyse gtt Tauber-ontwikkeling gtt Harmonic analysis Tauberian theorems Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s DE-604 Tauber-Sätze Zahlentheorie (DE-588)4369582-6 s Approximationstheorie (DE-588)4120913-8 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003556299&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wiener, Norbert 1894-1964 Generalized harmonic analysis and Tauberian theorems Analise Harmonica larpcal Analyse harmonique Harmonische analyse gtt Tauber-ontwikkeling gtt Harmonic analysis Tauberian theorems Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd Approximationstheorie (DE-588)4120913-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
subject_GND | (DE-588)4369582-6 (DE-588)4120913-8 (DE-588)4023453-8 |
title | Generalized harmonic analysis and Tauberian theorems |
title_auth | Generalized harmonic analysis and Tauberian theorems |
title_exact_search | Generalized harmonic analysis and Tauberian theorems |
title_full | Generalized harmonic analysis and Tauberian theorems |
title_fullStr | Generalized harmonic analysis and Tauberian theorems |
title_full_unstemmed | Generalized harmonic analysis and Tauberian theorems |
title_short | Generalized harmonic analysis and Tauberian theorems |
title_sort | generalized harmonic analysis and tauberian theorems |
topic | Analise Harmonica larpcal Analyse harmonique Harmonische analyse gtt Tauber-ontwikkeling gtt Harmonic analysis Tauberian theorems Tauber-Sätze Zahlentheorie (DE-588)4369582-6 gnd Approximationstheorie (DE-588)4120913-8 gnd Harmonische Analyse (DE-588)4023453-8 gnd |
topic_facet | Analise Harmonica Analyse harmonique Harmonische analyse Tauber-ontwikkeling Harmonic analysis Tauberian theorems Tauber-Sätze Zahlentheorie Approximationstheorie Harmonische Analyse |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=003556299&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wienernorbert generalizedharmonicanalysisandtauberiantheorems |