Partitioning strategies in Runge-Kutta type methods:
Abstract: "The numerical solution of ode's suffers under stability problems, if there are solution components with different time constants. Two approved approaches in software packages to handle these difficulties, automatic switching between stiff and nonstiff methods and the use of part...
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
München
1991
|
Schriftenreihe: | Technische Universität <München>: TUM-MATH
9102 |
Schlagworte: | |
Zusammenfassung: | Abstract: "The numerical solution of ode's suffers under stability problems, if there are solution components with different time constants. Two approved approaches in software packages to handle these difficulties, automatic switching between stiff and nonstiff methods and the use of partitioned methods for a given splitting into stiff and nonstiff subsystems, are presented and investigated for Runge-Kutta type methods. A strategy for a dynamic partitioning in Runge-Kutta type methods is discussed. Numerial results illustrate the efficiency of partitioning." |
Beschreibung: | 26 S. |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV005534356 | ||
003 | DE-604 | ||
005 | 20040413 | ||
007 | t | ||
008 | 920916s1991 |||| 00||| eng d | ||
035 | |a (OCoLC)32511821 | ||
035 | |a (DE-599)BVBBV005534356 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G | ||
088 | |a TUM MATH 01 91 M02 250 1 | ||
245 | 1 | 0 | |a Partitioning strategies in Runge-Kutta type methods |c R. Weiner ... |
264 | 1 | |a München |c 1991 | |
300 | |a 26 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Technische Universität <München>: TUM-MATH |v 9102 | |
520 | 3 | |a Abstract: "The numerical solution of ode's suffers under stability problems, if there are solution components with different time constants. Two approved approaches in software packages to handle these difficulties, automatic switching between stiff and nonstiff methods and the use of partitioned methods for a given splitting into stiff and nonstiff subsystems, are presented and investigated for Runge-Kutta type methods. A strategy for a dynamic partitioning in Runge-Kutta type methods is discussed. Numerial results illustrate the efficiency of partitioning." | |
650 | 4 | |a Runge-Kutta formulas | |
700 | 1 | |a Weiner, Rüdiger |d 1953- |e Sonstige |0 (DE-588)120944391 |4 oth | |
830 | 0 | |a Technische Universität <München>: TUM-MATH |v 9102 |w (DE-604)BV006186461 |9 9102 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-003469460 |
Datensatz im Suchindex
_version_ | 1804119756619382784 |
---|---|
any_adam_object | |
author_GND | (DE-588)120944391 |
building | Verbundindex |
bvnumber | BV005534356 |
ctrlnum | (OCoLC)32511821 (DE-599)BVBBV005534356 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01496nam a2200301 cb4500</leader><controlfield tag="001">BV005534356</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040413 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920916s1991 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)32511821</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV005534356</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">TUM MATH 01 91 M02 250 1</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partitioning strategies in Runge-Kutta type methods</subfield><subfield code="c">R. Weiner ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">26 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9102</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Abstract: "The numerical solution of ode's suffers under stability problems, if there are solution components with different time constants. Two approved approaches in software packages to handle these difficulties, automatic switching between stiff and nonstiff methods and the use of partitioned methods for a given splitting into stiff and nonstiff subsystems, are presented and investigated for Runge-Kutta type methods. A strategy for a dynamic partitioning in Runge-Kutta type methods is discussed. Numerial results illustrate the efficiency of partitioning."</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Runge-Kutta formulas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiner, Rüdiger</subfield><subfield code="d">1953-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)120944391</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Technische Universität <München>: TUM-MATH</subfield><subfield code="v">9102</subfield><subfield code="w">(DE-604)BV006186461</subfield><subfield code="9">9102</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-003469460</subfield></datafield></record></collection> |
id | DE-604.BV005534356 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:31:15Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-003469460 |
oclc_num | 32511821 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM |
owner_facet | DE-12 DE-91G DE-BY-TUM |
physical | 26 S. |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
record_format | marc |
series | Technische Universität <München>: TUM-MATH |
series2 | Technische Universität <München>: TUM-MATH |
spelling | Partitioning strategies in Runge-Kutta type methods R. Weiner ... München 1991 26 S. txt rdacontent n rdamedia nc rdacarrier Technische Universität <München>: TUM-MATH 9102 Abstract: "The numerical solution of ode's suffers under stability problems, if there are solution components with different time constants. Two approved approaches in software packages to handle these difficulties, automatic switching between stiff and nonstiff methods and the use of partitioned methods for a given splitting into stiff and nonstiff subsystems, are presented and investigated for Runge-Kutta type methods. A strategy for a dynamic partitioning in Runge-Kutta type methods is discussed. Numerial results illustrate the efficiency of partitioning." Runge-Kutta formulas Weiner, Rüdiger 1953- Sonstige (DE-588)120944391 oth Technische Universität <München>: TUM-MATH 9102 (DE-604)BV006186461 9102 |
spellingShingle | Partitioning strategies in Runge-Kutta type methods Technische Universität <München>: TUM-MATH Runge-Kutta formulas |
title | Partitioning strategies in Runge-Kutta type methods |
title_auth | Partitioning strategies in Runge-Kutta type methods |
title_exact_search | Partitioning strategies in Runge-Kutta type methods |
title_full | Partitioning strategies in Runge-Kutta type methods R. Weiner ... |
title_fullStr | Partitioning strategies in Runge-Kutta type methods R. Weiner ... |
title_full_unstemmed | Partitioning strategies in Runge-Kutta type methods R. Weiner ... |
title_short | Partitioning strategies in Runge-Kutta type methods |
title_sort | partitioning strategies in runge kutta type methods |
topic | Runge-Kutta formulas |
topic_facet | Runge-Kutta formulas |
volume_link | (DE-604)BV006186461 |
work_keys_str_mv | AT weinerrudiger partitioningstrategiesinrungekuttatypemethods |