Classical topology and quantum states:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore ; New Jersey ; London ; Hong Kong
World Scientific
1991
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 358 Seiten |
ISBN: | 9810203292 9810203306 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004664555 | ||
003 | DE-604 | ||
005 | 20210903 | ||
007 | t | ||
008 | 920109s1991 |||| 00||| engod | ||
020 | |a 9810203292 |9 981-02-0329-2 | ||
020 | |a 9810203306 |9 981-02-0330-6 | ||
035 | |a (OCoLC)243711941 | ||
035 | |a (DE-599)BVBBV004664555 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-19 |a DE-355 |a DE-29T |a DE-706 |a DE-83 |a DE-11 | ||
050 | 0 | |a QC20.7.T65 | |
082 | 0 | |a 514 |2 20 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a UO 4040 |0 (DE-625)146241: |2 rvk | ||
084 | |a MAT 540f |2 stub | ||
084 | |a 81Txx |2 msc | ||
084 | |a PHY 014f |2 stub | ||
084 | |a PHY 023f |2 stub | ||
100 | 1 | |a Balachandran, Atyalam Parameswaran |d 1938- |0 (DE-588)153156511 |4 aut | |
245 | 1 | 0 | |a Classical topology and quantum states |c A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA |
264 | 1 | |a Singapore ; New Jersey ; London ; Hong Kong |b World Scientific |c 1991 | |
300 | |a XVII, 358 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Champs, Théorie quantique des | |
650 | 7 | |a Champs, Théorie quantique des |2 ram | |
650 | 4 | |a Forces nucléaires (Physique) | |
650 | 7 | |a Kwantumveldentheorie |2 gtt | |
650 | 4 | |a Topologie | |
650 | 7 | |a Topologie |2 gtt | |
650 | 7 | |a Topologie |2 ram | |
650 | 4 | |a Nuclear forces (Physics) | |
650 | 4 | |a Quantum field theory | |
650 | 4 | |a Topology | |
650 | 0 | 7 | |a Wellenfunktion |0 (DE-588)4189547-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knicksoliton |0 (DE-588)4245710-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Skyrmion-Modell |0 (DE-588)4242058-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gravitation |0 (DE-588)4021908-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares mathematisches Modell |0 (DE-588)4127859-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stringtheorie |0 (DE-588)4224278-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Skyrmion-Modell |0 (DE-588)4242058-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | 1 | |a Wellenfunktion |0 (DE-588)4189547-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Knicksoliton |0 (DE-588)4245710-5 |D s |
689 | 2 | 1 | |a Nichtlineares mathematisches Modell |0 (DE-588)4127859-8 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Stringtheorie |0 (DE-588)4224278-2 |D s |
689 | 3 | 1 | |a Gravitation |0 (DE-588)4021908-2 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 4 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 4 | |5 DE-604 | |
700 | 1 | |a Marmo, Giuseppe |d 1946- |e Verfasser |0 (DE-588)151411565 |4 aut | |
700 | 1 | |a Skagerstam, B. S. |0 (DE-588)1240504640 |4 aut | |
700 | 1 | |a Stern, August |d 1945- |0 (DE-588)1048664910 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-4271-91-2 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002865538&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-002865538 |
Datensatz im Suchindex
_version_ | 1804118783232573440 |
---|---|
adam_text | xiii
[contents]
Chapter 1: INTRODUCTION 1
PART I
CLASSICAL MECHANICS AND QUANTUM STATES
Chapter 2: THE DIRAC BERGMANN THEORY OF
CONSTRAINTS
2.1 Introduction 9
2.2 Constraint Analysis 10
2.3 Quantization Procedure 13
Chapter 3: NONRELATIVISTIC PARTICLES WITH
FIXED SPIN
3.1 Introduction 16
3.2 The Hamiltonian Description 16
3.3 The Lagrangian Description 18
3.4 Gauge Properties of Lg 21
3.5 Principal Fibre Bundles 23
3.6 Gauge Fixing 26
3.7 Connections in a Principal Fibre Bundle 28
3.8 Horizontal Lifts in a Principal Fibre
Bundle 35
Chapter 4: MAGNETIC MONOPOLES
4.1 Introduction 38
4.2 Equations of Motion 38
4.3 The Hamiltonian Formalism 39
4.4 The Lagrangian Formalism 40
4.5 Gauge Properties of L 42
Chapter 5: THE CANONICAL FORMALISM AND
QUANTIZATION
5.1 Introduction 44
5.2 Nonrelativistic Spinning Particles 46
5.3 The Gupta Bleuler Approach to
Quantization 49
5.4 Magnetic Monopoles 52
xiv
Chapter 6: THE WESS ZUMINO TERM AND THE
PATH SPACE
6.1 Introduction 55
6.2 The Charge Monopole System 55
6.3 Wave Functions and the Bundle Q
for a Wess Zumino Term 61
Chapter 7: QUANTUM SYMMETRIES AND THE
WESS ZUMINO TERM
7.1 Introduction 68
7.2 The Group G 71
7.3 The Charge Monopole System Revisited 76
Chapter 8: QUANTUM THEORY FOR MULTIPLY
CONNECTED CONFIGURATION SPACES
8.1 Introduction 80
8.2 The Universal Covering Space
and the Fundamental Group 82
8.3 Examples of Multiply Connected
Configuration Spaces 85
8.4 Quantization on Multiply
Connected Configuration Spaces 89
8.5 Nonabelian Fundamental Groups 91
8.6 The Case of the Asymmetric Rotor 94
PART II
TOPOLOGICAL SOLITONS AND NONLINEAR MODELS
Chapter 9: TOPOLOGICAL SOLITONS IN ONE AND
TWO DIMENSIONS
9.1 Introduction 99
9.2 A Soliton in One Dimension 104
9.3 Solitons in Two Dimensions 106
XV
Chapter 10: NONLINEAR MODELS AS GAUGE THEORIES
10.1 Introduction 122
10.2 Examples of Nonlinear Models 125
Chapter 11: THE CHERN SIMONS TERM
11.1 Introduction 130
11.2 The Chern Simons Term in the 2 + 1
Dimensional Nonlinear a Model 135
PART III
SKYRMIONS
Chapter 12: THE EFFECTIVE LAGRANGIAN FOR QCD
12.1 Introduction 143
12.2 The QCD Effective Chiral Lagrangian 146
Chapter 13: SKYRME SOLITONS FOR TWO FLAVOURS
13.1 Introduction 152
13.2 The Size of the Soliton and
the Skyrme Term 157
13.3 The Spherically Symmetric
Ansatz 160
13.4 Semiclassical Quantization of
the Skyrmion 163
Chapter 14: PRELIMINARY DISCUSSION OF SKYRME S
PROPOSALS
14.1 Introduction 174
14.2 Phenomenological Comments 175
14.3 Electric Charge for Two Flavours 176
Chapter 15: BARYON NUMBER AND SPIN OF THE
SKYRMION
15.1 Introduction 179
15.2 Winding Number is Baryon Number 180
15.3 Skyrmion is Spinorial 184
15.4 The Wess Zumino Term in
Collective Coordinates 188
15.5 Canonical Quantization 193
xvi
Chapter 16: MORE ON THE WESS ZUMINO TERM
16.1 Introduction 198
16.2 The Chiral Model in 1 + 1 Space Time 200
16.3 The Chiral Model in 3 + 1 Space Time 203
16.4 Reduction of the Wess Zumino Term 204
16.5 Electric Charges and the Wess Zumino
Term 207
16.6 The Wess Zumino Novikov Witten Model 210
Chapter 17: A HIERARCHY OF SPHERICALLY
SYMMETRIC ANSATZE
17.1 Introduction 217
17.2 A General Definition of
Spherical Symmetry 217
17.3 The Dibaryon 219
17.4 Quantization Ambiguities for
Any Number of Flavours 227
Chapter 18: SKYRMION PHENOMENOLOGY
18.1 Introduction 235
18.2 Static Properties in the Two Flavoured
Model 236
18.3 Baryon Masses in the Three Flavoured
Model 243
Chapter 19: ELECTROWEAK SKYRMIONS
19.1 Introduction 250
19.2 The GSW Theory and the
Strong Coupling Limit 252
19.3 The Spherically Symmetric Ansatz 257
19.4 Semiclassical Quantization 261
19.5 Phenomenological Properties 264
xvii
PART IV
GAUGE, GRAVITY AND STRING THEORIES
Chapter 20: MULTIPLY CONNECTED CONFIGURATION
SPACES IN GAUGE AND GRAVITY
THEORIES
20.1 Introduction 271
20.2 The Canonical Formalism and
an Approach to U6 States
in Gauge and Gravity Theories 272
20.3 The Configuration Space for
Nonabelian Gauge Theories 276
20.4 The Configuration Space for
Gravity Theories 279
20.5 The Domain of Wave Functions in
Gauge Theories and Gravity 280
20.6 Comments on Observables 283
Chapter 21: GEONS AND THEIR PROPERTIES
21.1 Introduction 285
21.2 The Prime Decomposition Theorem
and Gravitational Geons 286
21.3 Spinorial States from Pure Gravity 291
Chapter 22: STATISTICS, STRINGS AND GRAVITY
22.1 Introduction 296
22.2 Statistics in a Plane 297
22.3 Unoriented Strings 299
22.4 Oriented Strings 306
22.5 Quantum Gravity 307
Chapter 23: CONCLUDING REMARKS 311
REFERENCES 315
INDEX 351
|
any_adam_object | 1 |
author | Balachandran, Atyalam Parameswaran 1938- Marmo, Giuseppe 1946- Skagerstam, B. S. Stern, August 1945- |
author_GND | (DE-588)153156511 (DE-588)151411565 (DE-588)1240504640 (DE-588)1048664910 |
author_facet | Balachandran, Atyalam Parameswaran 1938- Marmo, Giuseppe 1946- Skagerstam, B. S. Stern, August 1945- |
author_role | aut aut aut aut |
author_sort | Balachandran, Atyalam Parameswaran 1938- |
author_variant | a p b ap apb g m gm b s s bs bss a s as |
building | Verbundindex |
bvnumber | BV004664555 |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.T65 |
callnumber-search | QC20.7.T65 |
callnumber-sort | QC 220.7 T65 |
callnumber-subject | QC - Physics |
classification_rvk | SK 340 UO 4000 UO 4040 |
classification_tum | MAT 540f PHY 014f PHY 023f |
ctrlnum | (OCoLC)243711941 (DE-599)BVBBV004664555 |
dewey-full | 514 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514 |
dewey-search | 514 |
dewey-sort | 3514 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03649nam a2200829 c 4500</leader><controlfield tag="001">BV004664555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210903 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">920109s1991 |||| 00||| engod</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810203292</subfield><subfield code="9">981-02-0329-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810203306</subfield><subfield code="9">981-02-0330-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)243711941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004664555</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC20.7.T65</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514</subfield><subfield code="2">20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4040</subfield><subfield code="0">(DE-625)146241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 540f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">81Txx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 014f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 023f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balachandran, Atyalam Parameswaran</subfield><subfield code="d">1938-</subfield><subfield code="0">(DE-588)153156511</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical topology and quantum states</subfield><subfield code="c">A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; New Jersey ; London ; Hong Kong</subfield><subfield code="b">World Scientific</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 358 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Champs, Théorie quantique des</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Champs, Théorie quantique des</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forces nucléaires (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kwantumveldentheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topologie</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nuclear forces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenfunktion</subfield><subfield code="0">(DE-588)4189547-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knicksoliton</subfield><subfield code="0">(DE-588)4245710-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Skyrmion-Modell</subfield><subfield code="0">(DE-588)4242058-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gravitation</subfield><subfield code="0">(DE-588)4021908-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares mathematisches Modell</subfield><subfield code="0">(DE-588)4127859-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stringtheorie</subfield><subfield code="0">(DE-588)4224278-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Skyrmion-Modell</subfield><subfield code="0">(DE-588)4242058-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Wellenfunktion</subfield><subfield code="0">(DE-588)4189547-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Knicksoliton</subfield><subfield code="0">(DE-588)4245710-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Nichtlineares mathematisches Modell</subfield><subfield code="0">(DE-588)4127859-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Stringtheorie</subfield><subfield code="0">(DE-588)4224278-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Gravitation</subfield><subfield code="0">(DE-588)4021908-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marmo, Giuseppe</subfield><subfield code="d">1946-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)151411565</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skagerstam, B. S.</subfield><subfield code="0">(DE-588)1240504640</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stern, August</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)1048664910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-4271-91-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002865538&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002865538</subfield></datafield></record></collection> |
id | DE-604.BV004664555 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:15:47Z |
institution | BVB |
isbn | 9810203292 9810203306 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002865538 |
oclc_num | 243711941 |
open_access_boolean | |
owner | DE-12 DE-384 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-706 DE-83 DE-11 |
owner_facet | DE-12 DE-384 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-29T DE-706 DE-83 DE-11 |
physical | XVII, 358 Seiten |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | World Scientific |
record_format | marc |
spelling | Balachandran, Atyalam Parameswaran 1938- (DE-588)153156511 aut Classical topology and quantum states A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA Singapore ; New Jersey ; London ; Hong Kong World Scientific 1991 XVII, 358 Seiten txt rdacontent n rdamedia nc rdacarrier Champs, Théorie quantique des Champs, Théorie quantique des ram Forces nucléaires (Physique) Kwantumveldentheorie gtt Topologie Topologie gtt Topologie ram Nuclear forces (Physics) Quantum field theory Topology Wellenfunktion (DE-588)4189547-2 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Knicksoliton (DE-588)4245710-5 gnd rswk-swf Skyrmion-Modell (DE-588)4242058-1 gnd rswk-swf Gravitation (DE-588)4021908-2 gnd rswk-swf Nichtlineares mathematisches Modell (DE-588)4127859-8 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Stringtheorie (DE-588)4224278-2 gnd rswk-swf Skyrmion-Modell (DE-588)4242058-1 s DE-604 Quantenmechanik (DE-588)4047989-4 s Wellenfunktion (DE-588)4189547-2 s Knicksoliton (DE-588)4245710-5 s Nichtlineares mathematisches Modell (DE-588)4127859-8 s Stringtheorie (DE-588)4224278-2 s Gravitation (DE-588)4021908-2 s Quantenfeldtheorie (DE-588)4047984-5 s Topologie (DE-588)4060425-1 s Marmo, Giuseppe 1946- Verfasser (DE-588)151411565 aut Skagerstam, B. S. (DE-588)1240504640 aut Stern, August 1945- (DE-588)1048664910 aut Erscheint auch als Online-Ausgabe 978-981-4271-91-2 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002865538&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Balachandran, Atyalam Parameswaran 1938- Marmo, Giuseppe 1946- Skagerstam, B. S. Stern, August 1945- Classical topology and quantum states Champs, Théorie quantique des Champs, Théorie quantique des ram Forces nucléaires (Physique) Kwantumveldentheorie gtt Topologie Topologie gtt Topologie ram Nuclear forces (Physics) Quantum field theory Topology Wellenfunktion (DE-588)4189547-2 gnd Quantenmechanik (DE-588)4047989-4 gnd Knicksoliton (DE-588)4245710-5 gnd Skyrmion-Modell (DE-588)4242058-1 gnd Gravitation (DE-588)4021908-2 gnd Nichtlineares mathematisches Modell (DE-588)4127859-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologie (DE-588)4060425-1 gnd Stringtheorie (DE-588)4224278-2 gnd |
subject_GND | (DE-588)4189547-2 (DE-588)4047989-4 (DE-588)4245710-5 (DE-588)4242058-1 (DE-588)4021908-2 (DE-588)4127859-8 (DE-588)4047984-5 (DE-588)4060425-1 (DE-588)4224278-2 |
title | Classical topology and quantum states |
title_auth | Classical topology and quantum states |
title_exact_search | Classical topology and quantum states |
title_full | Classical topology and quantum states A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA |
title_fullStr | Classical topology and quantum states A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA |
title_full_unstemmed | Classical topology and quantum states A. P. Balachandran, Physics Department Syracuse University Syracuse, N.Y. 13244-1130 USA ; G. Marmo Department of Physical Sciences Naples University and INFN, Naples Section 1-80125 Naples Italy ; B.S. Skagerstam Chalmers University of Technology University of Göteborg S-41296, Göteborg Sweden ; A. Stern Department of Physics and Astronomy University of Alabama Tuscaloose, AL 35487-0324 USA |
title_short | Classical topology and quantum states |
title_sort | classical topology and quantum states |
topic | Champs, Théorie quantique des Champs, Théorie quantique des ram Forces nucléaires (Physique) Kwantumveldentheorie gtt Topologie Topologie gtt Topologie ram Nuclear forces (Physics) Quantum field theory Topology Wellenfunktion (DE-588)4189547-2 gnd Quantenmechanik (DE-588)4047989-4 gnd Knicksoliton (DE-588)4245710-5 gnd Skyrmion-Modell (DE-588)4242058-1 gnd Gravitation (DE-588)4021908-2 gnd Nichtlineares mathematisches Modell (DE-588)4127859-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd Topologie (DE-588)4060425-1 gnd Stringtheorie (DE-588)4224278-2 gnd |
topic_facet | Champs, Théorie quantique des Forces nucléaires (Physique) Kwantumveldentheorie Topologie Nuclear forces (Physics) Quantum field theory Topology Wellenfunktion Quantenmechanik Knicksoliton Skyrmion-Modell Gravitation Nichtlineares mathematisches Modell Quantenfeldtheorie Stringtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=002865538&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT balachandranatyalamparameswaran classicaltopologyandquantumstates AT marmogiuseppe classicaltopologyandquantumstates AT skagerstambs classicaltopologyandquantumstates AT sternaugust classicaltopologyandquantumstates |