Multipliers of p-integrable functions:
Given a locally compact Abelian group and the space integrable functions on said group; with the space of multipliers on the functions defined as the space of bounded operators on the functions which commute with translations by elements of the group; it is proved that the space of multipliers is th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Los Angeles, Calif.
1964
|
Schlagworte: | |
Zusammenfassung: | Given a locally compact Abelian group and the space integrable functions on said group; with the space of multipliers on the functions defined as the space of bounded operators on the functions which commute with translations by elements of the group; it is proved that the space of multipliers is the conjugate space of a Banach space of continuous functions on the group. As a direct consequence, it is shown that the space of multipliers is the closure in the weak (strong) operator topology of the span of the translation operators. The results are applied to the study of translates of multipliers and to the relations between multipliers and lacunary sets of the character group of the compact group. (Author). |
Beschreibung: | Los Angeles, Calif., Univ. of Calif., Diss. |
Beschreibung: | 40 Bl. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV004322164 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 910424s1964 |||| 00||| engod | ||
035 | |a (OCoLC)227325384 | ||
035 | |a (DE-599)BVBBV004322164 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
100 | 1 | |a Figà-Talamanca, Alessandro |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multipliers of p-integrable functions |
264 | 1 | |a Los Angeles, Calif. |c 1964 | |
300 | |a 40 Bl. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Los Angeles, Calif., Univ. of Calif., Diss. | ||
520 | 3 | |a Given a locally compact Abelian group and the space integrable functions on said group; with the space of multipliers on the functions defined as the space of bounded operators on the functions which commute with translations by elements of the group; it is proved that the space of multipliers is the conjugate space of a Banach space of continuous functions on the group. As a direct consequence, it is shown that the space of multipliers is the closure in the weak (strong) operator topology of the span of the translation operators. The results are applied to the study of translates of multipliers and to the relations between multipliers and lacunary sets of the character group of the compact group. (Author). | |
650 | 7 | |a Algebra |2 dtict | |
650 | 7 | |a Algebraic topology |2 dtict | |
650 | 7 | |a Functional analysis |2 dtict | |
650 | 7 | |a Groups(mathematics) |2 dtict | |
650 | 7 | |a Harmonic analysis |2 dtict | |
650 | 7 | |a Integral equations |2 dtict | |
650 | 7 | |a Integral transforms |2 dtict | |
650 | 7 | |a Operators(mathematics) |2 dtict | |
650 | 7 | |a Special functions(mathematics) |2 dtict | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002687728 |
Datensatz im Suchindex
_version_ | 1804118510927872000 |
---|---|
any_adam_object | |
author | Figà-Talamanca, Alessandro |
author_facet | Figà-Talamanca, Alessandro |
author_role | aut |
author_sort | Figà-Talamanca, Alessandro |
author_variant | a f t aft |
building | Verbundindex |
bvnumber | BV004322164 |
ctrlnum | (OCoLC)227325384 (DE-599)BVBBV004322164 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01817nam a2200373 c 4500</leader><controlfield tag="001">BV004322164</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">910424s1964 |||| 00||| engod</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)227325384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV004322164</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Figà-Talamanca, Alessandro</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multipliers of p-integrable functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Los Angeles, Calif.</subfield><subfield code="c">1964</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">40 Bl.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Los Angeles, Calif., Univ. of Calif., Diss.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Given a locally compact Abelian group and the space integrable functions on said group; with the space of multipliers on the functions defined as the space of bounded operators on the functions which commute with translations by elements of the group; it is proved that the space of multipliers is the conjugate space of a Banach space of continuous functions on the group. As a direct consequence, it is shown that the space of multipliers is the closure in the weak (strong) operator topology of the span of the translation operators. The results are applied to the study of translates of multipliers and to the relations between multipliers and lacunary sets of the character group of the compact group. (Author).</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraic topology</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functional analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groups(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral equations</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integral transforms</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Operators(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Special functions(mathematics)</subfield><subfield code="2">dtict</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002687728</subfield></datafield></record></collection> |
id | DE-604.BV004322164 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T16:11:27Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002687728 |
oclc_num | 227325384 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 40 Bl. |
publishDate | 1964 |
publishDateSearch | 1964 |
publishDateSort | 1964 |
record_format | marc |
spelling | Figà-Talamanca, Alessandro Verfasser aut Multipliers of p-integrable functions Los Angeles, Calif. 1964 40 Bl. txt rdacontent n rdamedia nc rdacarrier Los Angeles, Calif., Univ. of Calif., Diss. Given a locally compact Abelian group and the space integrable functions on said group; with the space of multipliers on the functions defined as the space of bounded operators on the functions which commute with translations by elements of the group; it is proved that the space of multipliers is the conjugate space of a Banach space of continuous functions on the group. As a direct consequence, it is shown that the space of multipliers is the closure in the weak (strong) operator topology of the span of the translation operators. The results are applied to the study of translates of multipliers and to the relations between multipliers and lacunary sets of the character group of the compact group. (Author). Algebra dtict Algebraic topology dtict Functional analysis dtict Groups(mathematics) dtict Harmonic analysis dtict Integral equations dtict Integral transforms dtict Operators(mathematics) dtict Special functions(mathematics) dtict |
spellingShingle | Figà-Talamanca, Alessandro Multipliers of p-integrable functions Algebra dtict Algebraic topology dtict Functional analysis dtict Groups(mathematics) dtict Harmonic analysis dtict Integral equations dtict Integral transforms dtict Operators(mathematics) dtict Special functions(mathematics) dtict |
title | Multipliers of p-integrable functions |
title_auth | Multipliers of p-integrable functions |
title_exact_search | Multipliers of p-integrable functions |
title_full | Multipliers of p-integrable functions |
title_fullStr | Multipliers of p-integrable functions |
title_full_unstemmed | Multipliers of p-integrable functions |
title_short | Multipliers of p-integrable functions |
title_sort | multipliers of p integrable functions |
topic | Algebra dtict Algebraic topology dtict Functional analysis dtict Groups(mathematics) dtict Harmonic analysis dtict Integral equations dtict Integral transforms dtict Operators(mathematics) dtict Special functions(mathematics) dtict |
topic_facet | Algebra Algebraic topology Functional analysis Groups(mathematics) Harmonic analysis Integral equations Integral transforms Operators(mathematics) Special functions(mathematics) |
work_keys_str_mv | AT figatalamancaalessandro multipliersofpintegrablefunctions |