Existence of bounded Dirichlet finite biharmonic functions:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Helsinki
Suomalainen Tiedeakatemia
1972
|
Schriftenreihe: | Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae / A / 1]
505 |
Schlagworte: | |
Beschreibung: | Einzelaufnahme eines Zeitschr.-H. |
Beschreibung: | 12 S. |
ISBN: | 9514100328 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV003419695 | ||
003 | DE-604 | ||
005 | 20120117 | ||
007 | t | ||
008 | 900725s1972 |||| 00||| eng d | ||
020 | |a 9514100328 |9 951-41-0032-8 | ||
035 | |a (OCoLC)8420229 | ||
035 | |a (DE-599)BVBBV003419695 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-739 |a DE-188 |a DE-355 | ||
050 | 0 | |a Q60 | |
082 | 0 | |a 517.35 | |
100 | 1 | |a Nakai, Mitsuru |e Verfasser |4 aut | |
245 | 1 | 0 | |a Existence of bounded Dirichlet finite biharmonic functions |c by Mitsuru Nakai and Leo Sario |
264 | 1 | |a Helsinki |b Suomalainen Tiedeakatemia |c 1972 | |
300 | |a 12 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae / A / 1] |v 505 | |
500 | |a Einzelaufnahme eines Zeitschr.-H. | ||
650 | 4 | |a Polyharmonic functions | |
650 | 4 | |a Riemann surfaces | |
700 | 1 | |a Sario, Leo |e Verfasser |4 aut | |
810 | 2 | |a A / 1] |t Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae |v 505 |w (DE-604)BV002800397 |9 505 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-002163509 |
Datensatz im Suchindex
_version_ | 1804117767956201472 |
---|---|
any_adam_object | |
author | Nakai, Mitsuru Sario, Leo |
author_facet | Nakai, Mitsuru Sario, Leo |
author_role | aut aut |
author_sort | Nakai, Mitsuru |
author_variant | m n mn l s ls |
building | Verbundindex |
bvnumber | BV003419695 |
callnumber-first | Q - Science |
callnumber-label | Q60 |
callnumber-raw | Q60 |
callnumber-search | Q60 |
callnumber-sort | Q 260 |
callnumber-subject | Q - General Science |
ctrlnum | (OCoLC)8420229 (DE-599)BVBBV003419695 |
dewey-full | 517.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 517 - [Unassigned] |
dewey-raw | 517.35 |
dewey-search | 517.35 |
dewey-sort | 3517.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01207nam a2200349 cb4500</leader><controlfield tag="001">BV003419695</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">900725s1972 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9514100328</subfield><subfield code="9">951-41-0032-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)8420229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV003419695</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q60</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">517.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakai, Mitsuru</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence of bounded Dirichlet finite biharmonic functions</subfield><subfield code="c">by Mitsuru Nakai and Leo Sario</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Helsinki</subfield><subfield code="b">Suomalainen Tiedeakatemia</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae / A / 1]</subfield><subfield code="v">505</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Einzelaufnahme eines Zeitschr.-H.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyharmonic functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann surfaces</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sario, Leo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">A / 1]</subfield><subfield code="t">Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae</subfield><subfield code="v">505</subfield><subfield code="w">(DE-604)BV002800397</subfield><subfield code="9">505</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-002163509</subfield></datafield></record></collection> |
id | DE-604.BV003419695 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:59:39Z |
institution | BVB |
isbn | 9514100328 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-002163509 |
oclc_num | 8420229 |
open_access_boolean | |
owner | DE-384 DE-739 DE-188 DE-355 DE-BY-UBR |
owner_facet | DE-384 DE-739 DE-188 DE-355 DE-BY-UBR |
physical | 12 S. |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Suomalainen Tiedeakatemia |
record_format | marc |
series2 | Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae / A / 1] |
spelling | Nakai, Mitsuru Verfasser aut Existence of bounded Dirichlet finite biharmonic functions by Mitsuru Nakai and Leo Sario Helsinki Suomalainen Tiedeakatemia 1972 12 S. txt rdacontent n rdamedia nc rdacarrier Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae / A / 1] 505 Einzelaufnahme eines Zeitschr.-H. Polyharmonic functions Riemann surfaces Sario, Leo Verfasser aut A / 1] Suomalainen Tiedeakatemia <Helsinki>: [Annales Academiae Scientiarum Fennicae 505 (DE-604)BV002800397 505 |
spellingShingle | Nakai, Mitsuru Sario, Leo Existence of bounded Dirichlet finite biharmonic functions Polyharmonic functions Riemann surfaces |
title | Existence of bounded Dirichlet finite biharmonic functions |
title_auth | Existence of bounded Dirichlet finite biharmonic functions |
title_exact_search | Existence of bounded Dirichlet finite biharmonic functions |
title_full | Existence of bounded Dirichlet finite biharmonic functions by Mitsuru Nakai and Leo Sario |
title_fullStr | Existence of bounded Dirichlet finite biharmonic functions by Mitsuru Nakai and Leo Sario |
title_full_unstemmed | Existence of bounded Dirichlet finite biharmonic functions by Mitsuru Nakai and Leo Sario |
title_short | Existence of bounded Dirichlet finite biharmonic functions |
title_sort | existence of bounded dirichlet finite biharmonic functions |
topic | Polyharmonic functions Riemann surfaces |
topic_facet | Polyharmonic functions Riemann surfaces |
volume_link | (DE-604)BV002800397 |
work_keys_str_mv | AT nakaimitsuru existenceofboundeddirichletfinitebiharmonicfunctions AT sarioleo existenceofboundeddirichletfinitebiharmonicfunctions |