Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | French |
Veröffentlicht: |
Boston, Mass. u.a.
Birkhäuser
1985
|
Schriftenreihe: | Progress in mathematics
58. |
Schlagworte: | |
Beschreibung: | IX, 278 S. |
ISBN: | 3764333103 0817633103 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV002190032 | ||
003 | DE-604 | ||
005 | 20211123 | ||
007 | t | ||
008 | 890928s1985 |||| 00||| fre d | ||
020 | |a 3764333103 |9 3-7643-3310-3 | ||
020 | |a 0817633103 |9 0-8176-3310-3 | ||
035 | |a (OCoLC)12078796 | ||
035 | |a (DE-599)BVBBV002190032 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a fre | |
049 | |a DE-91G |a DE-384 |a DE-703 |a DE-739 |a DE-355 |a DE-824 |a DE-29T |a DE-634 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA329.42 | |
082 | 0 | |a 515.7/2 |2 19 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 472f |2 stub | ||
100 | 1 | |a Helffer, Bernard |d 1949- |e Verfasser |0 (DE-588)1031664645 |4 aut | |
245 | 1 | 0 | |a Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs |c Bernard Helffer ; Jean Nourrigat |
264 | 1 | |a Boston, Mass. u.a. |b Birkhäuser |c 1985 | |
300 | |a IX, 278 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 58. | |
650 | 4 | |a Hypoelliptic operators | |
650 | 4 | |a Polynomial operators | |
650 | 4 | |a Vector fields | |
650 | 0 | 7 | |a Hypoelliptizität |0 (DE-588)4161119-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynomoperator |0 (DE-588)4175267-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hypoelliptischer Polynomoperator |0 (DE-588)4161118-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hypoelliptischer Polynomoperator |0 (DE-588)4161118-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hypoelliptizität |0 (DE-588)4161119-6 |D s |
689 | 1 | 1 | |a Polynomoperator |0 (DE-588)4175267-3 |D s |
689 | 1 | 2 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Polynomoperator |0 (DE-588)4175267-3 |D s |
689 | 2 | 1 | |a Hypoelliptischer Operator |0 (DE-588)4138891-4 |D s |
689 | 2 | 2 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Nourrigat, Jean |e Verfasser |4 aut | |
830 | 0 | |a Progress in mathematics |v 58. |w (DE-604)BV000004120 |9 58 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001438506 |
Datensatz im Suchindex
_version_ | 1804116645406310400 |
---|---|
any_adam_object | |
author | Helffer, Bernard 1949- Nourrigat, Jean |
author_GND | (DE-588)1031664645 |
author_facet | Helffer, Bernard 1949- Nourrigat, Jean |
author_role | aut aut |
author_sort | Helffer, Bernard 1949- |
author_variant | b h bh j n jn |
building | Verbundindex |
bvnumber | BV002190032 |
callnumber-first | Q - Science |
callnumber-label | QA329 |
callnumber-raw | QA329.42 |
callnumber-search | QA329.42 |
callnumber-sort | QA 3329.42 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 540 SK 560 SK 620 |
classification_tum | MAT 472f |
ctrlnum | (OCoLC)12078796 (DE-599)BVBBV002190032 |
dewey-full | 515.7/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7/2 |
dewey-search | 515.7/2 |
dewey-sort | 3515.7 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02208nam a2200589 cb4500</leader><controlfield tag="001">BV002190032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1985 |||| 00||| fre d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764333103</subfield><subfield code="9">3-7643-3310-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817633103</subfield><subfield code="9">0-8176-3310-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)12078796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV002190032</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA329.42</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7/2</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 472f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Helffer, Bernard</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1031664645</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs</subfield><subfield code="c">Bernard Helffer ; Jean Nourrigat</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, Mass. u.a.</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 278 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">58.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypoelliptic operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polynomial operators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vector fields</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypoelliptizität</subfield><subfield code="0">(DE-588)4161119-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynomoperator</subfield><subfield code="0">(DE-588)4175267-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hypoelliptischer Polynomoperator</subfield><subfield code="0">(DE-588)4161118-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hypoelliptischer Polynomoperator</subfield><subfield code="0">(DE-588)4161118-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hypoelliptizität</subfield><subfield code="0">(DE-588)4161119-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Polynomoperator</subfield><subfield code="0">(DE-588)4175267-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Polynomoperator</subfield><subfield code="0">(DE-588)4175267-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Hypoelliptischer Operator</subfield><subfield code="0">(DE-588)4138891-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nourrigat, Jean</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">58.</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">58</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001438506</subfield></datafield></record></collection> |
id | DE-604.BV002190032 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:41:48Z |
institution | BVB |
isbn | 3764333103 0817633103 |
language | French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001438506 |
oclc_num | 12078796 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-634 DE-11 DE-188 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-703 DE-739 DE-355 DE-BY-UBR DE-824 DE-29T DE-634 DE-11 DE-188 |
physical | IX, 278 S. |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Helffer, Bernard 1949- Verfasser (DE-588)1031664645 aut Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs Bernard Helffer ; Jean Nourrigat Boston, Mass. u.a. Birkhäuser 1985 IX, 278 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 58. Hypoelliptic operators Polynomial operators Vector fields Hypoelliptizität (DE-588)4161119-6 gnd rswk-swf Hypoelliptischer Operator (DE-588)4138891-4 gnd rswk-swf Polynomoperator (DE-588)4175267-3 gnd rswk-swf Hypoelliptischer Polynomoperator (DE-588)4161118-4 gnd rswk-swf Vektorfeld (DE-588)4139571-2 gnd rswk-swf Hypoelliptischer Polynomoperator (DE-588)4161118-4 s DE-604 Hypoelliptizität (DE-588)4161119-6 s Polynomoperator (DE-588)4175267-3 s Vektorfeld (DE-588)4139571-2 s Hypoelliptischer Operator (DE-588)4138891-4 s Nourrigat, Jean Verfasser aut Progress in mathematics 58. (DE-604)BV000004120 58 |
spellingShingle | Helffer, Bernard 1949- Nourrigat, Jean Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs Progress in mathematics Hypoelliptic operators Polynomial operators Vector fields Hypoelliptizität (DE-588)4161119-6 gnd Hypoelliptischer Operator (DE-588)4138891-4 gnd Polynomoperator (DE-588)4175267-3 gnd Hypoelliptischer Polynomoperator (DE-588)4161118-4 gnd Vektorfeld (DE-588)4139571-2 gnd |
subject_GND | (DE-588)4161119-6 (DE-588)4138891-4 (DE-588)4175267-3 (DE-588)4161118-4 (DE-588)4139571-2 |
title | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs |
title_auth | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs |
title_exact_search | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs |
title_full | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs Bernard Helffer ; Jean Nourrigat |
title_fullStr | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs Bernard Helffer ; Jean Nourrigat |
title_full_unstemmed | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs Bernard Helffer ; Jean Nourrigat |
title_short | Hypoellipticité maximale pour des opérateurs polynomes de champs de vecteurs |
title_sort | hypoellipticite maximale pour des operateurs polynomes de champs de vecteurs |
topic | Hypoelliptic operators Polynomial operators Vector fields Hypoelliptizität (DE-588)4161119-6 gnd Hypoelliptischer Operator (DE-588)4138891-4 gnd Polynomoperator (DE-588)4175267-3 gnd Hypoelliptischer Polynomoperator (DE-588)4161118-4 gnd Vektorfeld (DE-588)4139571-2 gnd |
topic_facet | Hypoelliptic operators Polynomial operators Vector fields Hypoelliptizität Hypoelliptischer Operator Polynomoperator Hypoelliptischer Polynomoperator Vektorfeld |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT helfferbernard hypoellipticitemaximalepourdesoperateurspolynomesdechampsdevecteurs AT nourrigatjean hypoellipticitemaximalepourdesoperateurspolynomesdechampsdevecteurs |