Learning machines: Foundations of trainable pattern-classifying systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York
McGraw-Hill
1965
|
Schriftenreihe: | McGraw-Hill series in systems science.
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XI,137 S. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV001923756 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 890928s1965 |||| 00||| eng d | ||
035 | |a (OCoLC)300025552 | ||
035 | |a (DE-599)BVBBV001923756 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-384 |a DE-355 |a DE-29T |a DE-19 |a DE-706 |a DE-83 |a DE-N2 | ||
050 | 0 | |a Q335N54L 1965 | |
082 | 0 | |a 519.92 | |
084 | |a QH 720 |0 (DE-625)141611: |2 rvk | ||
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
100 | 1 | |a Nilsson, Nils J. |d 1933-2019 |e Verfasser |0 (DE-588)11005248X |4 aut | |
245 | 1 | 0 | |a Learning machines |b Foundations of trainable pattern-classifying systems |
264 | 1 | |a New York |b McGraw-Hill |c 1965 | |
300 | |a XI,137 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a McGraw-Hill series in systems science. | |
650 | 4 | |a Intelligence artificielle | |
650 | 7 | |a Intelligence artificielle |2 ram | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computer |0 (DE-588)4070083-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lernen |0 (DE-588)4035408-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soft Computing |0 (DE-588)4455833-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Computer |0 (DE-588)4070083-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lernen |0 (DE-588)4035408-8 |D s |
689 | 1 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 1 | 2 | |a Soft Computing |0 (DE-588)4455833-8 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001253637&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
940 | 1 | |q TUB-nveb | |
999 | |a oai:aleph.bib-bvb.de:BVB01-001253637 |
Datensatz im Suchindex
_version_ | 1804116362170204160 |
---|---|
adam_text | Titel: Learning machines
Autor: Nilsson, Nils J
Jahr: 1965
CONTENTS
Preface, vii
TRAINABLE PATTERN CLASSIFIERS 1
1.1 Machine classification of data, 1
1.2 The basic model, 2
1.3 The problem of what to measure, 4
1.4 Decision surfaces in pattern space, 4
1.5 Discriminant functions, 6
1.6 The selection of discriminant functions, 8
1.7 Training methods, 9
1.8 Summary of book by chapters, 11
1.9 Bibliographical and historical remarks, 12
References, 12
SOME IMPORTANT DISCRIMINANT FUNCTIONS:
THEIR PROPERTIES AND THEIR IMPLEMENTATIONS 15
2.1 Families of discriminant functions, 15
2.2 Linear discriminant functions, 16
2.3 Minimum-distance classifiers, 16
2.4 The decision surfaces of linear machines, 18
2.5 Linear classifications of patterns, 20
2.6 The threshold logic unit (TLU), 21
2.7 Piecewise linear discriminant functions, 24
2.8 Quadric discriminant functions, 27
2.9 Quadric decision surfaces, 28
2.10 Implementation of quadric discriminant functions, 28
2.11 $ functions, 30
2.12 The utility of functions for classifying patterns, 31
2.13 The number of linear dichotomies of N points of
d dimensions, 32
ix
CONTENTS
2.14 The effects of constraints, 35
2.15 The number of function dichotomies, 37
2.16 Machine capacity, 38
2.17 Bibliographical and historical remarks, 40
References, 41
3.1 Probabilistic pattern sets, 43
3.2 Discriminant functions based on decision theory, 44
3.3 Likelihoods, 45
3.4 A special loss function, 46
3.5 An example, 47
3.6 The bivariate normal probability-density function, 50
3.7 The multivariate normal distribution, 54
3.8 The optimum classifier for normal patterns, 55
3.9 Some special cases involving identical covariance
matrices, 56
3.10 Training with normal pattern sets, 57
3.11 Learning the mean vector of normal patterns, 58
3.12 Bibliographical and historical remarks, 61
References, 62
SOME NONPARAMETRIC TRAINING METHODS
4.1 Nonparametric training of a TLU, 65
4.2 Weight space, 66
4.3 TLU training procedures, 69
4.4 A numerical example of error-correction training, 72
4.5 An error-correction training procedure for R 2, 75
4.6 Applications to £ machines, 76
4.7 Bibliographical and historical remarks, 76
References, 77
PARAMETRIC TRAINING METHODS
43
FOR $ MACHINES
65
TRAINING THEOREMS
79
5.1 The fundamental training theorem, 79
5.2 Notation, 81
5.3 Proof 1, 82
5.4 Proof 2, 85
CONTENTS xi
5.5 A training theorem for 72-catcgory linear machines, 87
5.6 A related training theorem for the case R = 2, 90
5.7 Bibliographical and historical remarks, 92
References, 93
6.1 Layered networks of TLUs, 95
6.2 Committee machines, 97
6.3 A training procedure for committee machines, 99
6.4 An example, 101
6.5 Transformation properties of layered machines, 103
6.6 A sufficient condition for image-space linear
separability, 107
6.7 Derivation of a discriminant function for a layered
machine, 109
6.8 Bibliographical and historical remarks, 113
References, 113
7.1 Multimodal pattern-classifying tasks, 115
7.2 Training PWL machines, 116
7.3 A disadvantage of the error-correction training
methods, 118
7.4 A nonparametric decision procedure, 119
7.5 Nonparametric decisions based on distances to
modes, 121
7.6 Mode-seeking and related training methods for PWL
machines, 122
7.7 Bibliographical and historical remarks, 125
References, 126
A.l Separation of a quadratic form into positive and
negative parts, 127
A.2 Implementation, 128
A.3 Transformation of normal patterns, 131
LAYERED MACHINES
95
PIECEWISE LINEAR MACHINES
115
APPENDIX
127
INDEX
133
|
any_adam_object | 1 |
author | Nilsson, Nils J. 1933-2019 |
author_GND | (DE-588)11005248X |
author_facet | Nilsson, Nils J. 1933-2019 |
author_role | aut |
author_sort | Nilsson, Nils J. 1933-2019 |
author_variant | n j n nj njn |
building | Verbundindex |
bvnumber | BV001923756 |
callnumber-first | Q - Science |
callnumber-label | Q335N54L 1965 |
callnumber-raw | Q335N54L 1965 |
callnumber-search | Q335N54L 1965 |
callnumber-sort | Q 3335 N54 L 41965 |
callnumber-subject | Q - General Science |
classification_rvk | QH 720 ST 285 |
ctrlnum | (OCoLC)300025552 (DE-599)BVBBV001923756 |
dewey-full | 519.92 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.92 |
dewey-search | 519.92 |
dewey-sort | 3519.92 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02052nam a2200529 c 4500</leader><controlfield tag="001">BV001923756</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">890928s1965 |||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)300025552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV001923756</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-N2</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q335N54L 1965</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.92</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 720</subfield><subfield code="0">(DE-625)141611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nilsson, Nils J.</subfield><subfield code="d">1933-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11005248X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning machines</subfield><subfield code="b">Foundations of trainable pattern-classifying systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">McGraw-Hill</subfield><subfield code="c">1965</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI,137 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">McGraw-Hill series in systems science.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligence artificielle</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Intelligence artificielle</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lernen</subfield><subfield code="0">(DE-588)4035408-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computer</subfield><subfield code="0">(DE-588)4070083-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lernen</subfield><subfield code="0">(DE-588)4035408-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Soft Computing</subfield><subfield code="0">(DE-588)4455833-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001253637&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nveb</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-001253637</subfield></datafield></record></collection> |
id | DE-604.BV001923756 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T15:37:18Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-001253637 |
oclc_num | 300025552 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-N2 |
owner_facet | DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-29T DE-19 DE-BY-UBM DE-706 DE-83 DE-N2 |
physical | XI,137 S. |
psigel | TUB-nveb |
publishDate | 1965 |
publishDateSearch | 1965 |
publishDateSort | 1965 |
publisher | McGraw-Hill |
record_format | marc |
series2 | McGraw-Hill series in systems science. |
spelling | Nilsson, Nils J. 1933-2019 Verfasser (DE-588)11005248X aut Learning machines Foundations of trainable pattern-classifying systems New York McGraw-Hill 1965 XI,137 S. txt rdacontent n rdamedia nc rdacarrier McGraw-Hill series in systems science. Intelligence artificielle Intelligence artificielle ram Künstliche Intelligenz Mustererkennung (DE-588)4040936-3 gnd rswk-swf Computer (DE-588)4070083-5 gnd rswk-swf Lernen (DE-588)4035408-8 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Soft Computing (DE-588)4455833-8 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s Computer (DE-588)4070083-5 s DE-604 Lernen (DE-588)4035408-8 s Künstliche Intelligenz (DE-588)4033447-8 s Soft Computing (DE-588)4455833-8 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001253637&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nilsson, Nils J. 1933-2019 Learning machines Foundations of trainable pattern-classifying systems Intelligence artificielle Intelligence artificielle ram Künstliche Intelligenz Mustererkennung (DE-588)4040936-3 gnd Computer (DE-588)4070083-5 gnd Lernen (DE-588)4035408-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Soft Computing (DE-588)4455833-8 gnd |
subject_GND | (DE-588)4040936-3 (DE-588)4070083-5 (DE-588)4035408-8 (DE-588)4033447-8 (DE-588)4455833-8 |
title | Learning machines Foundations of trainable pattern-classifying systems |
title_auth | Learning machines Foundations of trainable pattern-classifying systems |
title_exact_search | Learning machines Foundations of trainable pattern-classifying systems |
title_full | Learning machines Foundations of trainable pattern-classifying systems |
title_fullStr | Learning machines Foundations of trainable pattern-classifying systems |
title_full_unstemmed | Learning machines Foundations of trainable pattern-classifying systems |
title_short | Learning machines |
title_sort | learning machines foundations of trainable pattern classifying systems |
title_sub | Foundations of trainable pattern-classifying systems |
topic | Intelligence artificielle Intelligence artificielle ram Künstliche Intelligenz Mustererkennung (DE-588)4040936-3 gnd Computer (DE-588)4070083-5 gnd Lernen (DE-588)4035408-8 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Soft Computing (DE-588)4455833-8 gnd |
topic_facet | Intelligence artificielle Künstliche Intelligenz Mustererkennung Computer Lernen Soft Computing |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=001253637&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nilssonnilsj learningmachinesfoundationsoftrainablepatternclassifyingsystems |