Möbius functions, incidence algebras and power series representations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
1986
|
Schriftenreihe: | Lecture notes in mathematics
1202 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 134 S. graph. Darst. |
ISBN: | 3540167714 0387167714 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV000527555 | ||
003 | DE-604 | ||
005 | 20080228 | ||
007 | t | ||
008 | 870612s1986 d||| |||| 00||| eng d | ||
020 | |a 3540167714 |9 3-540-16771-4 | ||
020 | |a 0387167714 |9 0-387-16771-4 | ||
035 | |a (OCoLC)230833348 | ||
035 | |a (DE-599)BVBBV000527555 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-91G |a DE-384 |a DE-355 |a DE-20 |a DE-824 |a DE-29T |a DE-19 |a DE-706 |a DE-11 |a DE-188 |a DE-83 | ||
050 | 0 | |a QA3 | |
082 | 0 | |a 512/.24 |2 19 | |
082 | 0 | |a 510 |2 19 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MAT 140f |2 stub | ||
084 | |a MAT 147f |2 stub | ||
100 | 1 | |a Dür, Arne |e Verfasser |4 aut | |
245 | 1 | 0 | |a Möbius functions, incidence algebras and power series representations |c Arne Dür |
264 | 1 | |a Berlin [u.a.] |b Springer |c 1986 | |
300 | |a VIII, 134 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1202 | |
650 | 4 | |a Algèbres d'incidence | |
650 | 7 | |a Generating functions |2 gtt | |
650 | 4 | |a Möbius, Fonction de | |
650 | 7 | |a Möbius-transformaties |2 gtt | |
650 | 4 | |a Séries de puissances | |
650 | 4 | |a Incidence algebras | |
650 | 4 | |a Möbius function | |
650 | 4 | |a Power series | |
650 | 0 | 7 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Möbius-Funktion |0 (DE-588)4128093-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Möbius-Umkehrformel |0 (DE-588)4698915-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzreihe |0 (DE-588)4138577-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Möbius-Funktion |0 (DE-588)4128093-3 |D s |
689 | 0 | 1 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 2 | 1 | |a Potenzreihe |0 (DE-588)4138577-9 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Möbius-Umkehrformel |0 (DE-588)4698915-8 |D s |
689 | 3 | 1 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Potenzreihe |0 (DE-588)4138577-9 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Möbius-Funktion |0 (DE-588)4128093-3 |D s |
689 | 5 | |5 DE-604 | |
830 | 0 | |a Lecture notes in mathematics |v 1202 |w (DE-604)BV000676446 |9 1202 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000325345&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805071478928965632 |
---|---|
adam_text |
CONTENTS
CHAPTER I : CATEGORICAL STRUCTURES AND INCIDENCE ALGEBRAS 1
§1. Categorical structures 1
§2. The incidence algebra 7
§3. Subobjects and quotient objects 16
§4. Functors and second cohomology 24
§5. Examples 29
CHAPTER II : PARTITIONS, FUNCTORS AND EXPONENTIAL FORMULAS 35
§1. Partitions in categories 35
§2. Functors 44
CHAPTER III : SHEAFLIKE CATEGORICAL STRUCTURES
AND INCIDENCE BIALGEBRAS 50
§1. Sheaflike categorical structures 50
§2. The incidence bialgebra and
the affine' monoid of multiplicative functions 58
§3. Subobjects and quotient objects 65
§4. Power series representations 67
§5. The basic examples 71
§6. Auxiliary considerations 74
CHAPTER IV : APPLICATIONS 77
§1. Systems of finite sets 77
§2. Invariant partitions of finite sets under group action 83
§3. Rooted forests and Butcher series 88
§4. Matroids and graded Hopf algebras 91
§5. Partial partitions of finite sets 92
§6. Partial partitions of finite vector spaces 97
§7. A class of geometric lattices based on finite groups 104
APPENDIX : ALGEBRAIC REQUISITES 109
§1. Linear topological modules 109
§2. Abstract incidence algebras 110
§3. Affine group schemes 116
§4. Power series representations of affine monoids 119
REFERENCES 123
A LIST OF RECENT ARTICLES CONNECTED
WITH COMBINATORIAL MO"BIUS INVERSION 128
INDEX 132 |
any_adam_object | 1 |
author | Dür, Arne |
author_facet | Dür, Arne |
author_role | aut |
author_sort | Dür, Arne |
author_variant | a d ad |
building | Verbundindex |
bvnumber | BV000527555 |
callnumber-first | Q - Science |
callnumber-label | QA3 |
callnumber-raw | QA3 |
callnumber-search | QA3 |
callnumber-sort | QA 13 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 140f MAT 147f |
ctrlnum | (OCoLC)230833348 (DE-599)BVBBV000527555 |
dewey-full | 512/.24 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra 510 - Mathematics |
dewey-raw | 512/.24 510 |
dewey-search | 512/.24 510 |
dewey-sort | 3512 224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV000527555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080228</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870612s1986 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540167714</subfield><subfield code="9">3-540-16771-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387167714</subfield><subfield code="9">0-387-16771-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)230833348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV000527555</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.24</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 147f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dür, Arne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Möbius functions, incidence algebras and power series representations</subfield><subfield code="c">Arne Dür</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 134 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1202</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbres d'incidence</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Generating functions</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Möbius, Fonction de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Möbius-transformaties</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Séries de puissances</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidence algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Möbius function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Power series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Umkehrformel</subfield><subfield code="0">(DE-588)4698915-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Möbius-Umkehrformel</subfield><subfield code="0">(DE-588)4698915-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1202</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1202</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000325345&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
id | DE-604.BV000527555 |
illustrated | Illustrated |
indexdate | 2024-07-20T04:38:28Z |
institution | BVB |
isbn | 3540167714 0387167714 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-000325345 |
oclc_num | 230833348 |
open_access_boolean | |
owner | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-11 DE-188 DE-83 |
owner_facet | DE-12 DE-91G DE-BY-TUM DE-384 DE-355 DE-BY-UBR DE-20 DE-824 DE-29T DE-19 DE-BY-UBM DE-706 DE-11 DE-188 DE-83 |
physical | VIII, 134 S. graph. Darst. |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Dür, Arne Verfasser aut Möbius functions, incidence algebras and power series representations Arne Dür Berlin [u.a.] Springer 1986 VIII, 134 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1202 Algèbres d'incidence Generating functions gtt Möbius, Fonction de Möbius-transformaties gtt Séries de puissances Incidence algebras Möbius function Power series Inzidenzalgebra (DE-588)4128094-5 gnd rswk-swf Möbius-Funktion (DE-588)4128093-3 gnd rswk-swf Möbius-Umkehrformel (DE-588)4698915-8 gnd rswk-swf Potenzreihe (DE-588)4138577-9 gnd rswk-swf Möbius-Funktion (DE-588)4128093-3 s Inzidenzalgebra (DE-588)4128094-5 s DE-604 Potenzreihe (DE-588)4138577-9 s Möbius-Umkehrformel (DE-588)4698915-8 s Lecture notes in mathematics 1202 (DE-604)BV000676446 1202 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000325345&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dür, Arne Möbius functions, incidence algebras and power series representations Lecture notes in mathematics Algèbres d'incidence Generating functions gtt Möbius, Fonction de Möbius-transformaties gtt Séries de puissances Incidence algebras Möbius function Power series Inzidenzalgebra (DE-588)4128094-5 gnd Möbius-Funktion (DE-588)4128093-3 gnd Möbius-Umkehrformel (DE-588)4698915-8 gnd Potenzreihe (DE-588)4138577-9 gnd |
subject_GND | (DE-588)4128094-5 (DE-588)4128093-3 (DE-588)4698915-8 (DE-588)4138577-9 |
title | Möbius functions, incidence algebras and power series representations |
title_auth | Möbius functions, incidence algebras and power series representations |
title_exact_search | Möbius functions, incidence algebras and power series representations |
title_full | Möbius functions, incidence algebras and power series representations Arne Dür |
title_fullStr | Möbius functions, incidence algebras and power series representations Arne Dür |
title_full_unstemmed | Möbius functions, incidence algebras and power series representations Arne Dür |
title_short | Möbius functions, incidence algebras and power series representations |
title_sort | mobius functions incidence algebras and power series representations |
topic | Algèbres d'incidence Generating functions gtt Möbius, Fonction de Möbius-transformaties gtt Séries de puissances Incidence algebras Möbius function Power series Inzidenzalgebra (DE-588)4128094-5 gnd Möbius-Funktion (DE-588)4128093-3 gnd Möbius-Umkehrformel (DE-588)4698915-8 gnd Potenzreihe (DE-588)4138577-9 gnd |
topic_facet | Algèbres d'incidence Generating functions Möbius, Fonction de Möbius-transformaties Séries de puissances Incidence algebras Möbius function Power series Inzidenzalgebra Möbius-Funktion Möbius-Umkehrformel Potenzreihe |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=000325345&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT durarne mobiusfunctionsincidencealgebrasandpowerseriesrepresentations |