Pre-Riesz spaces:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2019]
|
Schriftenreihe: | De Gruyter expositions in mathematics
Volume 66 |
Schlagworte: | |
Online-Zugang: | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110475395&searchTitles=true Inhaltsverzeichnis |
Beschreibung: | XIII,301 Seiten Illustrationen 24 cm x 17 cm |
ISBN: | 9783110475395 3110475391 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV045283980 | ||
003 | DE-604 | ||
005 | 20201005 | ||
007 | t | ||
008 | 181113s2019 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1152831194 |2 DE-101 | |
020 | |a 9783110475395 |c hbk. |9 978-3-11-047539-5 | ||
020 | |a 3110475391 |9 3-11-047539-1 | ||
035 | |a (OCoLC)1077492270 | ||
035 | |a (DE-599)DNB1152831194 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-11 | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Kalauch, Anke |d 1972- |e Verfasser |0 (DE-588)123832659 |4 aut | |
245 | 1 | 0 | |a Pre-Riesz spaces |c Anke Kalauch, Onno van Gaans |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a XIII,301 Seiten |b Illustrationen |c 24 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics |v Volume 66 | |
650 | 0 | 7 | |a Vektorverband |0 (DE-588)4187471-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riesz-Raum |0 (DE-588)4178139-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbgeordneter Vektorraum |0 (DE-588)4158788-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionalanalysis |0 (DE-588)4018916-8 |2 gnd |9 rswk-swf |
653 | |a Riesz-Raum | ||
653 | |a Vektorverband | ||
653 | |a Funktionalanalysis | ||
689 | 0 | 0 | |a Riesz-Raum |0 (DE-588)4178139-9 |D s |
689 | 0 | 1 | |a Vektorverband |0 (DE-588)4187471-7 |D s |
689 | 0 | 2 | |a Halbgeordneter Vektorraum |0 (DE-588)4158788-1 |D s |
689 | 0 | 3 | |a Funktionalanalysis |0 (DE-588)4018916-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a van Gaans, Onno |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-047629-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-047544-9 |
830 | 0 | |a De Gruyter expositions in mathematics |v Volume 66 |w (DE-604)BV004069300 |9 66 | |
856 | 4 | 2 | |m X:MVB |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110475395&searchTitles=true |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671487&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-030671487 |
Datensatz im Suchindex
_version_ | 1804179060197163008 |
---|---|
adam_text | CONTENTS
PREFACE * IX
1 A PRIMER ON ORDERED VECTOR SPACES * 1
1.1 ORDERED VECTOR SPACES * 2
1.1.1 VECTOR SPACE ORDERS AND CONES * 2
1.1.2 VECTOR LATTICES * 6
1.1.3 THE RIESZ DECOMPOSITION PROPERTY * 8
1.1.4 ORDER CONVERGENCE * 11
1.2 OPERATORS ON ORDERED VECTOR SPACES * 12
1.2.1 ORDER-BOUNDED AND REGULAR OPERATORS * 12
1.2.2 THE RIESZ-KANTOROVICH FORMULAS * 15
1.3 IDEALS AND BANDS IN VECTOR LATTICES * 17
1.3.1 DEFINITIONS AND BASIC PROPERTIES * 17
1.3.2 IDEALSAND BANDS IN C(Q) * 20
1.4 RIESZ HOMOMORPHISMS AND DISJOINTNESS PRESERVING OPERATORS
IN VECTOR LATTICES * 22
1.5 NORM AND ORDER* 26
1.5.1 CLOSED CONES * 27
1.5.2 SEMIMONOTONE NORMS * 28
1.5.3 ORDER UNIT SPACES * 29
1.5.4 NORMED VECTOR LATTICES * 35
1.5.5 RELATIVELY UNIFORM CONVERGENCE * 36
1.6 ORDER DENSENESS * 40
1.7 EXAMPLES * 42
1.7.1 THE ICE CREAM CONE AND FRIENDS * 42
1.7.2 POLYHEDRAL CONES * 46
1.8 ODDS AND ENDS FROM FUNCTIONAL ANALYSIS AND TOPOLOGY * 50
2 EMBEDDINGS, COVERS, AND COMPLETIONS * 53
2.1 DEDEKIND COMPLETION * 54
2.1.1 DEDEKIND CUTS * 54
2.1.2 ADDITION AND SCALAR MULTIPLICATION ON THE SET OF DEDEKIND CUTS
2.1.3 THE DEDEKIND COMPLETION OF AN ARCHIMEDEAN SPACE * 61
2.2 PRE-RIESZ SPACES * 68
2.2.1 DEFINITION AND BASIC PROPERTIES * 68
2.2.2 SOME LATTICE-LIKE FORMULAS * 71
2.3 RIESZ* HOMOMORPHISMS * 74
2.3.1 DEFINITION AND BASIC PROPERTIES * 74
2.3.2 EXTENSION AND RESTRICTION * 76
2.3.3 COMPARISON WITH RIESZ HOMOMORPHISMS * 80
2.4 VECTOR LATTICE COVER AND RIESZ COMPLETION * 87
2.5 FUNCTIONAL REPRESENTATION * 94
2.6 EXAMPLES OF VECTOR LATTICE COVERS * 101
2.6.1 POLYHEDRAL CONES * 102
2.6.2 LORENTZ CONES * 103
2.6.3 POSITIVE SEMIDEFINITE MATRICES * 104
2.6.4 FINITE DIMENSIONAL EXAMPLES BY MEANS OF A DUAL BASE * 107
2.7 THE FREMLIN TENSOR PRODUCT AS RIESZ COMPLETION * 108
2.7.1 THE VECTOR SPACE TENSOR PRODUCT* 108
2.7.2 THE FREMLIN TENSOR PRODUCT* 110
2.7.3 THE PROJECTIVE CONE AND ITS RELATIVELY UNIFORM CLOSURE * 111
2.8 EXTENSION AND RESTRICTION METHOD * 115
3 SEMINORMS ON PRE-RIESZ SPACES * 119
3.1 BASIC PROPERTIES OF SEMINORMS * 119
3.2 PRE-RIESZ SEMINORMS * 121
3.2.1 GENERALIZATION OF RIESZ SEMINORMS: PLAN OF ATTACK * 121
3.2.2 SOLID S E TS
----
123
3.2.3 SOLVEX SETS * 128
3.2.4 PRE-RIESZ SEMINORMS: SEMINORMS WITH SOLVEX UNIT BALLS * 132
3.3 EXTENSION AND RESTRICTION OF MONOTONE SEMINORMS * 138
3.3.1 MONOTONE SEMINORMS AND RELATED CONCEPTS * 139
3.3.2 EXTENSION OF SEMINORMS * 144
3.3.3 EXTENSION AND NORM COMPLETENESS * 150
3.3.4 UNIQUENESS OF EXTENSIONS * 153
3.3.5 QUOTIENTS OVER KERNELS OF MONOTONE SEMINORMS * 157
3.3.6 EXTENSION TO M-SEMINORMS AND L-SEMINORMS * 160
3.4 REGULAR SEMINORMS * 163
3.4.1 DEFINITION AND EXAMPLES * 164
3.4.2 EXTENSION OF REGULAR SEMINORMS * 165
3.4.3 REGULARIZATION OF SEMINORMS * 168
3.5 SEMIMONOTONE NORMS REVISITED * 171
3.6 TOPOLOGIES ON PRE-RIESZ SPACES * 173
3.6.1 LOCALLY FULL TOPOLOGIES
----
174
3.6.2 TOPOLOGIES SUCH THAT THE POSITIVE CONE IS CLOSED * 179
3.6.3 LOCALLY SOLID TOPOLOGIES * 180
3.7 ORDER CONVERGENCE AND UNBOUNDED ORDER CONVERGENCE * 183
3.7.1 ORDER CONVERGENCE REVISITED * 184
3.7.2 EXTENSION AND RESTRICTION OF ORDER CONVERGENCE * 187
3.7.3 UNBOUNDED ORDER CONVERGENCE * 190
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
5
5.1
5.1.1
5
.
1.2
5.2
5
.
2.1
5.2.2
5.2.3
5.2.4
5.3
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
DISJOINTNESS, BANDS, AND IDEALS IN PRE-RIESZ SPACES * 193
DISJOINTNESS
----
193
DISJOINTNESS IN PARTIALLY ORDERED VECTOR SPACES * 193
DISJOINTNESS AND EMBEDDING * 195
DISJOINTNESS IN SPACES WITH THE RIESZ DECOMPOSITION
PROPERTY
----
196
DISJOINTNESS IN ANTILATTICES
----
198
FORDABLE PRE-RIESZ SPACES * 200
BANDS
----
203
BANDS IN PRE-RIESZ SPACES * 204
EXTENSION OF BANDS
----
204
RESTRICTION OF BANDS IN FORDABLE PRE-RIESZ SPACES * 206
IDEALS
----
206
IDEALS IN PARTIALLY ORDERED VECTOR SPACES * 207
EXTENSION AND RESTRICTION OF IDEALS * 209
DIRECTED IDEALS * 215
BANDS IN SPACES WITH ORDER UNITS * 219
CARRIERS OF BANDS * 219
CHARACTERIZATION OF BANDS BY BISATURATED SETS * 222
BANDS IN SPACES WITH POLYHEDRAL CONES
----
225
BANDS IN FINITE DIMENSIONAL SPACES * 228
CARRIERS OF EXTENSION BANDS * 234
OPERATORS ON PRE-RIESZ SPACES * 237
DISJOINTNESS PRESERVING OPERATORS * 237
DEFINITIONS AND EXAMPLES * 237
RIESZ* HOMOMORPHISMS ON PRE-RIESZ SPACES OF
CONTINUOUS FUNCTIONS
----
243
DISJOINTNESS PRESERVING INVERSE * 247
INVERSES OF BIJECTIVE RIESZ* HOMOMORPHISMS * 247
ON D-ISOMORPHISMS IN PRE-RIESZ SPACES
----
250
DISJOINTNESS PRESERVING BIJECTIONS IN FINITE DIMENSIONS * 252
DISJOINTNESS PRESERVING INVERSE IN INFINITE DIMENSIONS
----
254
DISJOINTNESS PRESERVING CO-SEMIGROUPS * 256
SPACES OF OPERATORS * 261
OPERATORS BETWEEN ORDERED NORMED SPACES * 262
OPERATORS WITH DEDEKIND COMPLETE RANGE SPACES * 264
THE SPACE OF ORDER CONTINUOUS OPERATORS: AN EXAMPLE *
SPECTRAL THEORY FOR OPERATORS ON ORDERED BANACH SPACES
----
DEFINITIONS AND BASIC PROPERTIES * 279
5.5.2
5.5.3
BIBLIOGRAPHY -
INDEX * 297
SPECTRAL PROPERTIES OF POSITIVE OPERATORS * 281
SOME SPECTRAL PROPERTIES FOR OPERATORS ON BANACH LATTICES * 286
* 289
|
any_adam_object | 1 |
author | Kalauch, Anke 1972- van Gaans, Onno |
author_GND | (DE-588)123832659 |
author_facet | Kalauch, Anke 1972- van Gaans, Onno |
author_role | aut aut |
author_sort | Kalauch, Anke 1972- |
author_variant | a k ak g o v go gov |
building | Verbundindex |
bvnumber | BV045283980 |
classification_rvk | SK 600 |
ctrlnum | (OCoLC)1077492270 (DE-599)DNB1152831194 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02280nam a2200553 cb4500</leader><controlfield tag="001">BV045283980</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201005 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">181113s2019 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1152831194</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110475395</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-11-047539-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110475391</subfield><subfield code="9">3-11-047539-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1077492270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1152831194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kalauch, Anke</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123832659</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pre-Riesz spaces</subfield><subfield code="c">Anke Kalauch, Onno van Gaans</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII,301 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">Volume 66</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorverband</subfield><subfield code="0">(DE-588)4187471-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riesz-Raum</subfield><subfield code="0">(DE-588)4178139-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbgeordneter Vektorraum</subfield><subfield code="0">(DE-588)4158788-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Riesz-Raum</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Vektorverband</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Funktionalanalysis</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riesz-Raum</subfield><subfield code="0">(DE-588)4178139-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Vektorverband</subfield><subfield code="0">(DE-588)4187471-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Halbgeordneter Vektorraum</subfield><subfield code="0">(DE-588)4158788-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van Gaans, Onno</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-047629-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-047544-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">Volume 66</subfield><subfield code="w">(DE-604)BV004069300</subfield><subfield code="9">66</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110475395&searchTitles=true</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671487&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-030671487</subfield></datafield></record></collection> |
id | DE-604.BV045283980 |
illustrated | Illustrated |
indexdate | 2024-07-10T08:13:51Z |
institution | BVB |
isbn | 9783110475395 3110475391 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-030671487 |
oclc_num | 1077492270 |
open_access_boolean | |
owner | DE-20 DE-11 |
owner_facet | DE-20 DE-11 |
physical | XIII,301 Seiten Illustrationen 24 cm x 17 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter expositions in mathematics |
series2 | De Gruyter expositions in mathematics |
spelling | Kalauch, Anke 1972- Verfasser (DE-588)123832659 aut Pre-Riesz spaces Anke Kalauch, Onno van Gaans Berlin ; Boston De Gruyter [2019] © 2019 XIII,301 Seiten Illustrationen 24 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier De Gruyter expositions in mathematics Volume 66 Vektorverband (DE-588)4187471-7 gnd rswk-swf Riesz-Raum (DE-588)4178139-9 gnd rswk-swf Halbgeordneter Vektorraum (DE-588)4158788-1 gnd rswk-swf Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf Riesz-Raum Vektorverband Funktionalanalysis Riesz-Raum (DE-588)4178139-9 s Vektorverband (DE-588)4187471-7 s Halbgeordneter Vektorraum (DE-588)4158788-1 s Funktionalanalysis (DE-588)4018916-8 s DE-604 van Gaans, Onno Verfasser aut Erscheint auch als Online-Ausgabe, PDF 978-3-11-047629-3 Erscheint auch als Online-Ausgabe, EPUB 978-3-11-047544-9 De Gruyter expositions in mathematics Volume 66 (DE-604)BV004069300 66 X:MVB http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110475395&searchTitles=true DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671487&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kalauch, Anke 1972- van Gaans, Onno Pre-Riesz spaces De Gruyter expositions in mathematics Vektorverband (DE-588)4187471-7 gnd Riesz-Raum (DE-588)4178139-9 gnd Halbgeordneter Vektorraum (DE-588)4158788-1 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
subject_GND | (DE-588)4187471-7 (DE-588)4178139-9 (DE-588)4158788-1 (DE-588)4018916-8 |
title | Pre-Riesz spaces |
title_auth | Pre-Riesz spaces |
title_exact_search | Pre-Riesz spaces |
title_full | Pre-Riesz spaces Anke Kalauch, Onno van Gaans |
title_fullStr | Pre-Riesz spaces Anke Kalauch, Onno van Gaans |
title_full_unstemmed | Pre-Riesz spaces Anke Kalauch, Onno van Gaans |
title_short | Pre-Riesz spaces |
title_sort | pre riesz spaces |
topic | Vektorverband (DE-588)4187471-7 gnd Riesz-Raum (DE-588)4178139-9 gnd Halbgeordneter Vektorraum (DE-588)4158788-1 gnd Funktionalanalysis (DE-588)4018916-8 gnd |
topic_facet | Vektorverband Riesz-Raum Halbgeordneter Vektorraum Funktionalanalysis |
url | http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110475395&searchTitles=true http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=030671487&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004069300 |
work_keys_str_mv | AT kalauchanke prerieszspaces AT vangaansonno prerieszspaces |