The essence of dielectric waveguides:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2008
|
Schlagworte: | |
Online-Zugang: | http://deposit.dnb.de/cgi-bin/dokserv?id=2809004&prov=M&dok_var=1&dok_ext=htm Inhaltsverzeichnis |
Beschreibung: | XVI, 522 S. Ill., graph. Darst. |
ISBN: | 0387309292 9780387309293 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035090700 | ||
003 | DE-604 | ||
005 | 20081126 | ||
007 | t | ||
008 | 081009s2008 ad|| |||| 00||| eng d | ||
020 | |a 0387309292 |9 0-387-30929-2 | ||
020 | |a 9780387309293 |9 978-0-387-30929-3 | ||
035 | |a (OCoLC)212722007 | ||
035 | |a (DE-599)BVBBV035090700 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-11 |a DE-29T | ||
084 | |a ZN 4520 |0 (DE-625)157397: |2 rvk | ||
100 | 1 | |a Yeh, Cavour |e Verfasser |4 aut | |
245 | 1 | 0 | |a The essence of dielectric waveguides |c C. Yeh ; F. Shimabukuro |
264 | 1 | |a New York [u.a.] |b Springer |c 2008 | |
300 | |a XVI, 522 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Dielektrischer Wellenleiter |0 (DE-588)4149724-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dielektrischer Wellenleiter |0 (DE-588)4149724-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Shimabukuro, Fred |e Verfasser |4 aut | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=2809004&prov=M&dok_var=1&dok_ext=htm | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016758825&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016758825 |
Datensatz im Suchindex
_version_ | 1804138047510413312 |
---|---|
adam_text | CONTENTS
1.
Introduction
..........................................................1
1.1 Brief
Historical Background
........................................1
1.2
Scope of this Book
.................................................7
References
........................................................8
2.
Fundamental Electromagnetic Field Equations
........................11
2.1
Maxwell Equations
...............................................11
2.2
The Constitutive Relations
.........................................13
2.2.1
Simple Medium (Linear and
Isotropie)........................14
2.2.2 Anisotropie
Medium
.........................................15
2.2.3
Left-Handed Medium (Metamaterial)
.........................16
2.2.4
Conducting Medium
.........................................16
2.2.5
Dielectric Medium with Loss
.................................17
2.2.6
Nonlinear Medium
..........................................18
2.3
Boundary Conditions, Radiation Condition, and Edge Condition
.......20
2.3.1
Boundary Conditions
........................................20
2.3.2
Radiation Condition
.........................................28
2.3.3
Edge Condition
.............................................28
2.3.4
Uniqueness Theorem
........................................29
2.4
Energy Relations: Poynting s Vector Theorem
.......................29
2.5
Classification of Fields
............................................32
2.5.1
The Debye Potentials
........................................33
2.5.2
Basic Wave Types
...........................................34
2.5.3
Separation of Variables
......................................39
2.5.3.1
Rectangular Coordinates (x,y,z)
......................39
2.5.3.2
Circular Cylinder Coordinates (r,0,z)
.................40
2.5.3.3
Elliptical Cylinder Coordinates
(ξ, η, ζ)
................41
2.5.3.4
Parabolic Cylinder Coordinates
(ξ, η, ζ)
................42
2.6
Polarization of Waves
.............................................44
2.6.1
Linearly Polarized Waves
....................................44
2.6.2
Circularly Polarized Waves
...................................44
2.6.3
Elliptically Polarized Waves
..................................44
2.7
Phase Velocity and Group Velocity
.................................44
2.8
The Impedance Concept
...........................................46
2.9
Validity of the Scalar Wave Approach
...............................47
References
.......................................................52
χ
Contents
3.
Propagation Characteristics
of Guided
Waves
Along a Dielectric
Guide
...............................................................55
3.1
Typical
Surface
Waveguide
Structures
.............................55
3.2
Formal Approach to the Surface Waveguide Problems
...............57
3.3
The
ω-β
Diagram: Dispersion Relations
............................59
3.4
Geometrical Optics Approach
.....................................62
3.5
Attenuation Constant
.............................................65
3.5.1
Single Mode Case
..........................................66
3.5.2
Multimode Case
...........................................68
3.6
Signal Dispersion and Distortion
..................................70
3.7
α
and
Q
........................................................76
3.8
Excitation of Modes on a Dielectric Waveguide
.....................79
3.8.1
Excitation Through Direct Incidence
.........................79
3.8.1.1
Incident Plane Wave
................................81
3.8.1.2
Incident Gaussian Beam
.............................82
3.8.2
Excitation Through Efficient Transitions
......................85
3.9
Coupled Mode Theory
...........................................87
3.10
Bends and Corners for Dielectric Waveguides
......................89
3.11
Systems and Noise
...............................................92
References
......................................................96
4.
Planar Dielectric Waveguides
.........................................99
4.1
Fundamental Equations
............................................99
4.2
Dielectric Slab Waveguide
........................................100
4.2.1
The TM Surface Wave Modes
...............................101
4.2.1.1
Cutoff Conditions for TM Modes
.....................103
4.2.1.2
Distribution of Guided Power
........................105
4.2.1.3
Attenuation
........................................106
4.2.2
The
TE
Surface Wave Mode
................................107
4.2.3
Special Cases and Numerical Examples
......................109
4.3
Leaky Wave in a Heteroepitaxial Film Slab Waveguide
..............112
4.3.1
Leaky Modes along an Asymmetric Dielectric
Waveguide
................................................114
4.3.2
Approximate Solutions of the Characteristic Equations
.........115
4.4
Multilayered Dielectric Slab Waveguides
...........................118
4.5
Coupling Between Two Parallel Dielectric Slab Waveguides
.........122
4.6
The Sommerfeld-Zenneck Surface Impedance Waveguide
...........131
References
......................................................135
Contents xi
5.
Circular
Dielectric Waveguides
......................................137
5.1
Fundamental Equations
..........................................138
5.2
Modes on Uniform Solid Core Circular Dielectric Cylinder
..........139
5.2.1
Dispersion Relations
.......................................141
5.2.2
Cutoff Conditions
..........................................144
5.2.3
Attenuation
................................................147
5.2.3.1
The Exact Approach
................................147
5.2.3.2
The Perturbation Approach
..........................148
5.2.4
Field Configurations
........................................150
5.3
The Sommerfeld-Goubau Wire
...................................152
5.4
Modes on Radially Inhomogeneous Core Circular Dielectric
Cylinder
........................................................155
5.4.1
Formulation of the Problem
.................................155
5.4.2
Selected Examples
.........................................160
5.4.3
Hollow Cylindrical Dielectric Waveguide
.....................165
5.5
Experimental Determination of Propagation Characteristics
of Circular Dielectric Waveguides
.................................167
5.5.1
Ultrahigh
Q
Dielectric Rod Resonant Cavity
..................167
5.5.2
Measured Results
..........................................172
5.6
Summary and Conclusions
.......................................176
References
......................................................177
6.
Elliptical Dielectric Waveguides
.....................................179
6.1
Formulation of the Problem
.......................................180
6.2
Boundary Conditions
............................................184
6.3
Mode Classifications
.............................................188
6.4
The Dispersion Relations
.........................................189
6.4.1
Cutoff Frequencies of Modes
................................197
6.4.2
Transition to Circular Cross-Section
.........................199
6.4.3
Approximate Characteristic Equations
.......................201
6.4.4
Propagation Characteristics
.................................203
6.4.4.1
The Even Dominant eHEn Mode
....................204
6.4.4.2
The Odd Dominant
ОНЕИ
Mode
.....................205
6.4.4.3
Higher Order e,oHEn/m/ Modes
......................206
6.4.5
Field Configurations of the Dominant Modes
.................207
6.4.6
Attenuation Calculation
.....................................209
6.5
Weakly Guiding Elliptical Dielectric Waveguides
...................210
6.6
Experimental Results
............................................214
6.7
Comments
......................................................218
References
......................................................218
xii Contents
7.
Approximate Methods
..............................................221
7.1
Marcatili s Approximate Method
..................................221
7.1.1
Approximate Solution for a Rectangular Dielectric
Waveguide
................................................221
7.1.1.1
The E&m Modes
....................................223
7.1.1.2
The E*m Modes
....................................229
7.1.2
Examples
.................................................230
7.2
The Circular Harmonics Method
..................................231
7.3
Experimental Measurements
......................................238
References
......................................................240
8.
Inhomogeneous Dielectric Waveguides
...............................241
8.1
Debye Potentials for Inhomogeneous Medium
......................241
8.1.1
Rectangular Coordinates (x, y, z)
............................242
8.1.2
Spherical Coordinates
(τ,θ,φ)
..............................243
8.1.3
Circular Cylindrical Coordinates
{ρ,θ,ζ)
.....................244
8.2
Applications
....................................................245
8.2.1
Structures with Transverse Inhomogeneity
....................246
8.2.1.1
Wave Propagation along a Dielectric Slab with e(x)
and
μ0
Immersed in Free-space
......................246
8.2.1.2
Waves in Metallic Rectangular Waveguide Filled
with Transversely Inhomogeneous Dielectrics
.........249
8.2.1.3
Circularly Symmetric Waves along a Cylindrical
Radially Inhomogeneous Dielectric Cylinder
..........252
8.2.2
Structures with Longitudinal Inhomogeneity
..................255
8.2.2.1
Longitudinal Periodic Medium
.......................256
8.2.2.2
Solutions to the Hill Equation
........................259
8.2.2.3
Propagation Characteristics of Type (II) (TM) Waves
in Periodic Structures
...............................261
References
......................................................264
9.
Optical Fibers
......................................................265
9.1
Weakly Guiding Optical Fibers
....................................265
9.2
Dispersion
......................................................271
9.2.1
Material Dispersion
........................................271
9.2.2
Waveguide Dispersion
......................................272
9.2.3
Total Dispersion
...........................................273
9.3
Attenuation
.....................................................276
9.4
The Propagation Equation
........................................276
9.5
Selected Solutions to the Propagation Equation
.....................282
Contents xiii
9.6
Wavelength
Division
Multiplexed Beams (WDM)
...................284
9.6.1
Bit-Parallel WDM Single-Fiber Link
.........................286
9.6.2
Elements of a 12-Bit Parallel WDM System
..................286
9.6.2.1
The Transmitter
....................................287
9.6.2.2
The Single-Mode Fiber
..............................287
9.6.2.3
The Receiver
.......................................289
9.6.3
Design Considerations
......................................289
9.6.3.1
Wavelength Spacing Considerations
..................289
9.6.3.2
Skew and Walk-off Considerations
...................289
9.6.3.3
Loss Considerations
................................289
9.6.4
Experimental Demonstration of a Two Wavelength
BP-WDM System
..........................................289
9.7
Concluding Remarks
.............................................290
References
......................................................291
10. Solitons
and WDM
Solitons........................................295
10.1
Nonlinear Refractive Index
.....................................296
10.2
The Nonlinear Pulse Propagation Equation
.......................298
10.3
Solution of the Nonlinear Pulse Propagation Equation
.............305
10.4
Nonlinear Pulse Propagation for WDM Beams
(Cross-Field Modulation Effects)
................................307
10.4.1
Self-Phase Modulation (SPM) and Cross-Phase
Modulation (CPM)
......................................309
10.4.2
Normalized Nonlinear Propagation Equations for WDM
Beams
.................................................310
10.5
Soliton on a Single Beam
.......................................311
10.5.1
Bright
Solitons..........................................311
10.5.2
Dark
Solitons...........................................313
10.6
Applications of Nonlinear Cross-Field Modulation (CPM)
Effect
.........................................................313
10.6.1
Pulse Shepherding Effect (Dynamic Control of In-Flight
Pulses with a Shepherd Pulse)
............................314
10.6.1.1
Without Shepherd Pulse
.........................315
10.6.1.2
With Shepherd Pulse
............................316
10.6.2
Enhanced Pulse Compression in a Nonlinear Fiber by a
WDM Optical Pulse
.....................................319
10.6.2.1
Shepherding and Primary Pulses are all in the
Anomalous Dispersion Region
...................320
10.6.2.2
The Shepherd Pulse is in the Normal Dispersion
Region and the Primary Pulse is in the Anomalous
Dispersion Regime
.............................326
xiv Contents
10.6.2.3
The Shepherd Pulse and Primary Pulses are all
in the Normal Dispersion Region
.................326
10.6.2.4
Additional Simulation Study on WDM
Copropagating Pulses
...........................326
10.6.3
Generation of Time-Aligned Picosecond Pulses on
Wavelength-Division-Multiplexed Beams in a Nonlinear
Fiber
..................................................328
10.6.3.1
Generation of Time-Aligned Pulses
...............329
10.6.3.2
Computer Simulation Results
....................329
10.6.3.3
Experimental Setup and Results
..................330
10.6.4
Bit Parallel WDM
Solitons...............................334
References
.............................................337
11.
Ultra Low-Loss Dielectric Waveguides
..............................339
11.1
Theoretical Foundation
.........................................339
11.1.1
Normal Mode Solution
..................................340
11.1.2
Geometrical Loss Factor
.................................340
11.1.3
Relationship between Geometrical Loss Factors
for TE-Like Mode and for TM-Like Mode
.................343
11.1.4
External Field Decay Consideration
.......................343
11.2
Experimental Verification
.......................................345
11.3
Example of Low-Loss Terahertz Ribbon Waveguide
...............350
References
....................................................356
12.
Plasmon (SubWavelength) Waveguides
.............................359
І
2.1 TM
Wave Guidance Along a Metallic Substrate
...................360
12.2
TM Wave Guidance Along a Metallic Film
.......................365
12.3
Wave Guidance by Metal Ribbons
...............................371
12.4
SPP Waves Along Cylindrical Structures
.........................373
12.4.1
TM Waves
.............................................373
12.4.2
HE Waves
..............................................381
12.5
Nanofibers (Subwavelength Guiding Structures)
..................382
12.6
Conclusions and Discussion
....................................385
References
....................................................387
13.
Photonic Crystal Waveguides
......................................389
13.1
Fundamental Properties of Guided Waves in Periodic Structures
___389
13.2
Stop-Band and Pass-Band Property
..............................391
13.3
Dielectric-Rod Array Waveguide
................................393
Contents xv
13.4 Band
Gap and Waveguide Bends................................
394
13.5
Photonic
Bandgap Fiber
........................................396
13.6
Analytic Study of Surface Wave Propagation Along a Periodic
Structure
.....................................................397
References
....................................................406
14.
Metamaterial and Other Waveguides
...............................409
14.1
Moving Dielectric Waveguides
..................................409
14.1.1
Relativity,
Lorentz
Transformation, and Minkowski
Transformation
.........................................409
14.1.2
Reflection and Transmission of Electromagnetic Waves by
a Moving Plasma Medium
...............................410
14.1.3
Mode Propagation Along Moving Dielectric Slabs
..........418
14.1.3.1
TE
Modes
......................................419
14.1.3.2
TM Modes
.....................................420
14.1.4
Mode Propagation Along a Moving Dielectric Cylinder
.....421
14.1.5
Wave Propagation on a Moving Plasma Column
............425
14.2 Anisotropie
Medium Waveguides
...............................429
14.3
Metamaterial Artificial Dielectric Waveguides
....................435
14.3.1
Some Special Properties of Metamaterial
..................436
14.3.1.1
Ife<0and^<0,Thenn<0...................
436
14.3.1.2
Snell s Law for
η
< 0...........................437
14.3.1.3
Poynting s Vector and Wave Vector
in Metamaterial
................................437
14.3.1.4
Fresnel Formulas
...............................439
14.3.1.5
Formation of Metamaterials
......................441
14.3.1.6
Cloaking with Metamaterial
.....................441
14.3.2
Metamaterial Surface Waveguides
........................442
References
.............................................449
15.
Selected Numerical Approaches
....................................451
15.1
Outer Radiation Boundary Condition (ORBC)
for Computational Space
.......................................452
15.2
Finite Element Method
(FEM)
..................................452
15.2.1
Circular Fiber
..........................................461
15.2.2
Rectangular Structures
..................................463
15.2.3
Triangular Dielectric Guides
.............................466
15.2.4
Elliptical Dielectric Guide
...............................467
15.2.5
Single Material Fiber Guide
.............................468
15.2.6
Concluding Remarks
....................................470
xvi Contents
15.3
Beam Propagation Method (BPM) or Forward Marching
Split-Step Fast Fourier Transform Method
.......................470
15.3.1
Formulation of the Problem and the Numerical Approach
... 471
15.3.2
Gaussian Beam Propagation in a Radially Inhomogeneous
Fiber
..................................................474
15.3.3
Fiber Couplers
.........................................478
15.3.4
Fiber Tapers and Horns
..................................485
15.3.5
ω-β
Diagram From BPM
................................486
15.3.5.1
The Step-Index Circular Fiber
....................491
15.3.5.2
Graded-Index Circular Fiber
.....................492
15.3.5.3
Rectangular Fiber
...............................493
15.3.5.4
Elliptical Fiber
.................................495
15.3.5.5
Triangular Fiber
................................495
15.3.5.6
Diffused-Channel Rectangular Waveguide
.........496
15.3.5.7
Non-Axisymmetric Graded-Index Fiber
...........496
15.4
Finite Difference Time Domain Method (FDTD)
.................498
15.4.1
Excitation of a Ribbon Dielectric Waveguide
..............498
15.4.2
Ribbon Waveguide Assembled from Dielectric Rods
.......499
15.4.3
Dielectric Waveguide Transitions
.........................500
15.5
Concluding Remarks
..........................................504
References
....................................................506
Subject Index
.........................................................509
Author Index
............................ .. 517
|
adam_txt |
CONTENTS
1.
Introduction
.1
1.1 Brief
Historical Background
.1
1.2
Scope of this Book
.7
References
.8
2.
Fundamental Electromagnetic Field Equations
.11
2.1
Maxwell Equations
.11
2.2
The Constitutive Relations
.13
2.2.1
Simple Medium (Linear and
Isotropie).14
2.2.2 Anisotropie
Medium
.15
2.2.3
Left-Handed Medium (Metamaterial)
.16
2.2.4
Conducting Medium
.16
2.2.5
Dielectric Medium with Loss
.17
2.2.6
Nonlinear Medium
.18
2.3
Boundary Conditions, Radiation Condition, and Edge Condition
.20
2.3.1
Boundary Conditions
.20
2.3.2
Radiation Condition
.28
2.3.3
Edge Condition
.28
2.3.4
Uniqueness Theorem
.29
2.4
Energy Relations: Poynting's Vector Theorem
.29
2.5
Classification of Fields
.32
2.5.1
The Debye Potentials
.33
2.5.2
Basic Wave Types
.34
2.5.3
Separation of Variables
.39
2.5.3.1
Rectangular Coordinates (x,y,z)
.39
2.5.3.2
Circular Cylinder Coordinates (r,0,z)
.40
2.5.3.3
Elliptical Cylinder Coordinates
(ξ, η, ζ)
.41
2.5.3.4
Parabolic Cylinder Coordinates
(ξ, η, ζ)
.42
2.6
Polarization of Waves
.44
2.6.1
Linearly Polarized Waves
.44
2.6.2
Circularly Polarized Waves
.44
2.6.3
Elliptically Polarized Waves
.44
2.7
Phase Velocity and Group Velocity
.44
2.8
The Impedance Concept
.46
2.9
Validity of the Scalar Wave Approach
.47
References
.52
χ
Contents
3.
Propagation Characteristics
of Guided
Waves
Along a Dielectric
Guide
.55
3.1
Typical
Surface
Waveguide
Structures
.55
3.2
Formal Approach to the Surface Waveguide Problems
.57
3.3
The
ω-β
Diagram: Dispersion Relations
.59
3.4
Geometrical Optics Approach
.62
3.5
Attenuation Constant
.65
3.5.1
Single Mode Case
.66
3.5.2
Multimode Case
.68
3.6
Signal Dispersion and Distortion
.70
3.7
α
and
Q
.76
3.8
Excitation of Modes on a Dielectric Waveguide
.79
3.8.1
Excitation Through Direct Incidence
.79
3.8.1.1
Incident Plane Wave
.81
3.8.1.2
Incident Gaussian Beam
.82
3.8.2
Excitation Through Efficient Transitions
.85
3.9
Coupled Mode Theory
.87
3.10
Bends and Corners for Dielectric Waveguides
.89
3.11
Systems and Noise
.92
References
.96
4.
Planar Dielectric Waveguides
.99
4.1
Fundamental Equations
.99
4.2
Dielectric Slab Waveguide
.100
4.2.1
The TM Surface Wave Modes
.101
4.2.1.1
Cutoff Conditions for TM Modes
.103
4.2.1.2
Distribution of Guided Power
.105
4.2.1.3
Attenuation
.106
4.2.2
The
TE
Surface Wave Mode
.107
4.2.3
Special Cases and Numerical Examples
.109
4.3
Leaky Wave in a Heteroepitaxial Film Slab Waveguide
.112
4.3.1
Leaky Modes along an Asymmetric Dielectric
Waveguide
.114
4.3.2
Approximate Solutions of the Characteristic Equations
.115
4.4
Multilayered Dielectric Slab Waveguides
.118
4.5
Coupling Between Two Parallel Dielectric Slab Waveguides
.122
4.6
The Sommerfeld-Zenneck Surface Impedance Waveguide
.131
References
.135
Contents xi
5.
Circular
Dielectric Waveguides
.137
5.1
Fundamental Equations
.138
5.2
Modes on Uniform Solid Core Circular Dielectric Cylinder
.139
5.2.1
Dispersion Relations
.141
5.2.2
Cutoff Conditions
.144
5.2.3
Attenuation
.147
5.2.3.1
The Exact Approach
.147
5.2.3.2
The Perturbation Approach
.148
5.2.4
Field Configurations
.150
5.3
The Sommerfeld-Goubau Wire
.152
5.4
Modes on Radially Inhomogeneous Core Circular Dielectric
Cylinder
.155
5.4.1
Formulation of the Problem
.155
5.4.2
Selected Examples
.160
5.4.3
Hollow Cylindrical Dielectric Waveguide
.165
5.5
Experimental Determination of Propagation Characteristics
of Circular Dielectric Waveguides
.167
5.5.1
Ultrahigh
Q
Dielectric Rod Resonant Cavity
.167
5.5.2
Measured Results
.172
5.6
Summary and Conclusions
.176
References
.177
6.
Elliptical Dielectric Waveguides
.179
6.1
Formulation of the Problem
.180
6.2
Boundary Conditions
.184
6.3
Mode Classifications
.188
6.4
The Dispersion Relations
.189
6.4.1
Cutoff Frequencies of Modes
.197
6.4.2
Transition to Circular Cross-Section
.199
6.4.3
Approximate Characteristic Equations
.201
6.4.4
Propagation Characteristics
.203
6.4.4.1
The Even Dominant eHEn Mode
.204
6.4.4.2
The Odd Dominant
ОНЕИ
Mode
.205
6.4.4.3
Higher Order e,oHEn/m/ Modes
.206
6.4.5
Field Configurations of the Dominant Modes
.207
6.4.6
Attenuation Calculation
.209
6.5
Weakly Guiding Elliptical Dielectric Waveguides
.210
6.6
Experimental Results
.214
6.7
Comments
.218
References
.218
xii Contents
7.
Approximate Methods
.221
7.1
Marcatili's Approximate Method
.221
7.1.1
Approximate Solution for a Rectangular Dielectric
Waveguide
.221
7.1.1.1
The E&m Modes
.223
7.1.1.2
The E*m Modes
.229
7.1.2
Examples
.230
7.2
The Circular Harmonics Method
.231
7.3
Experimental Measurements
.238
References
.240
8.
Inhomogeneous Dielectric Waveguides
.241
8.1
Debye Potentials for Inhomogeneous Medium
.241
8.1.1
Rectangular Coordinates (x, y, z)
.242
8.1.2
Spherical Coordinates
(τ,θ,φ)
.243
8.1.3
Circular Cylindrical Coordinates
{ρ,θ,ζ)
.244
8.2
Applications
.245
8.2.1
Structures with Transverse Inhomogeneity
.246
8.2.1.1
Wave Propagation along a Dielectric Slab with e(x)
and
μ0
Immersed in Free-space
.246
8.2.1.2
Waves in Metallic Rectangular Waveguide Filled
with Transversely Inhomogeneous Dielectrics
.249
8.2.1.3
Circularly Symmetric Waves along a Cylindrical
Radially Inhomogeneous Dielectric Cylinder
.252
8.2.2
Structures with Longitudinal Inhomogeneity
.255
8.2.2.1
Longitudinal Periodic Medium
.256
8.2.2.2
Solutions to the Hill Equation
.259
8.2.2.3
Propagation Characteristics of Type (II) (TM) Waves
in Periodic Structures
.261
References
.264
9.
Optical Fibers
.265
9.1
Weakly Guiding Optical Fibers
.265
9.2
Dispersion
.271
9.2.1
Material Dispersion
.271
9.2.2
Waveguide Dispersion
.272
9.2.3
Total Dispersion
.273
9.3
Attenuation
.276
9.4
The Propagation Equation
.276
9.5
Selected Solutions to the Propagation Equation
.282
Contents xiii
9.6
Wavelength
Division
Multiplexed Beams (WDM)
.284
9.6.1
Bit-Parallel WDM Single-Fiber Link
.286
9.6.2
Elements of a 12-Bit Parallel WDM System
.286
9.6.2.1
The Transmitter
.287
9.6.2.2
The Single-Mode Fiber
.287
9.6.2.3
The Receiver
.289
9.6.3
Design Considerations
.289
9.6.3.1
Wavelength Spacing Considerations
.289
9.6.3.2
Skew and Walk-off Considerations
.289
9.6.3.3
Loss Considerations
.289
9.6.4
Experimental Demonstration of a Two Wavelength
BP-WDM System
.289
9.7
Concluding Remarks
.290
References
.291
10. Solitons
and WDM
Solitons.295
10.1
Nonlinear Refractive Index
.296
10.2
The Nonlinear Pulse Propagation Equation
.298
10.3
Solution of the Nonlinear Pulse Propagation Equation
.305
10.4
Nonlinear Pulse Propagation for WDM Beams
(Cross-Field Modulation Effects)
.307
10.4.1
Self-Phase Modulation (SPM) and Cross-Phase
Modulation (CPM)
.309
10.4.2
Normalized Nonlinear Propagation Equations for WDM
Beams
.310
10.5
Soliton on a Single Beam
.311
10.5.1
Bright
Solitons.311
10.5.2
Dark
Solitons.313
10.6
Applications of Nonlinear Cross-Field Modulation (CPM)
Effect
.313
10.6.1
Pulse Shepherding Effect (Dynamic Control of In-Flight
Pulses with a Shepherd Pulse)
.314
10.6.1.1
Without Shepherd Pulse
.315
10.6.1.2
With Shepherd Pulse
.316
10.6.2
Enhanced Pulse Compression in a Nonlinear Fiber by a
WDM Optical Pulse
.319
10.6.2.1
Shepherding and Primary Pulses are all in the
Anomalous Dispersion Region
.320
10.6.2.2
The Shepherd Pulse is in the Normal Dispersion
Region and the Primary Pulse is in the Anomalous
Dispersion Regime
.326
xiv Contents
10.6.2.3
The Shepherd Pulse and Primary Pulses are all
in the Normal Dispersion Region
.326
10.6.2.4
Additional Simulation Study on WDM
Copropagating Pulses
.326
10.6.3
Generation of Time-Aligned Picosecond Pulses on
Wavelength-Division-Multiplexed Beams in a Nonlinear
Fiber
.328
10.6.3.1
Generation of Time-Aligned Pulses
.329
10.6.3.2
Computer Simulation Results
.329
10.6.3.3
Experimental Setup and Results
.330
10.6.4
Bit Parallel WDM
Solitons.334
References
.337
11.
Ultra Low-Loss Dielectric Waveguides
.339
11.1
Theoretical Foundation
.339
11.1.1
Normal Mode Solution
.340
11.1.2
Geometrical Loss Factor
.340
11.1.3
Relationship between Geometrical Loss Factors
for TE-Like Mode and for TM-Like Mode
.343
11.1.4
External Field Decay Consideration
.343
11.2
Experimental Verification
.345
11.3
Example of Low-Loss Terahertz Ribbon Waveguide
.350
References
.356
12.
Plasmon (SubWavelength) Waveguides
.359
І
2.1 TM
Wave Guidance Along a Metallic Substrate
.360
12.2
TM Wave Guidance Along a Metallic Film
.365
12.3
Wave Guidance by Metal Ribbons
.371
12.4
SPP Waves Along Cylindrical Structures
.373
12.4.1
TM Waves
.373
12.4.2
HE Waves
.381
12.5
Nanofibers (Subwavelength Guiding Structures)
.382
12.6
Conclusions and Discussion
.385
References
.387
13.
Photonic Crystal Waveguides
.389
13.1
Fundamental Properties of Guided Waves in Periodic Structures
_389
13.2
Stop-Band and Pass-Band Property
.391
13.3
Dielectric-Rod Array Waveguide
.393
Contents xv
13.4 Band
Gap and Waveguide Bends.
394
13.5
Photonic
Bandgap Fiber
.396
13.6
Analytic Study of Surface Wave Propagation Along a Periodic
Structure
.397
References
.406
14.
Metamaterial and Other Waveguides
.409
14.1
Moving Dielectric Waveguides
.409
14.1.1
Relativity,
Lorentz
Transformation, and Minkowski
Transformation
.409
14.1.2
Reflection and Transmission of Electromagnetic Waves by
a Moving Plasma Medium
.410
14.1.3
Mode Propagation Along Moving Dielectric Slabs
.418
14.1.3.1
TE
Modes
.419
14.1.3.2
TM Modes
.420
14.1.4
Mode Propagation Along a Moving Dielectric Cylinder
.421
14.1.5
Wave Propagation on a Moving Plasma Column
.425
14.2 Anisotropie
Medium Waveguides
.429
14.3
Metamaterial Artificial Dielectric Waveguides
.435
14.3.1
Some Special Properties of Metamaterial
.436
14.3.1.1
Ife<0and^<0,Thenn<0.
436
14.3.1.2
Snell's Law for
η
< 0.437
14.3.1.3
Poynting's Vector and Wave Vector
in Metamaterial
.437
14.3.1.4
Fresnel Formulas
.439
14.3.1.5
Formation of Metamaterials
.441
14.3.1.6
Cloaking with Metamaterial
.441
14.3.2
Metamaterial Surface Waveguides
.442
References
.449
15.
Selected Numerical Approaches
.451
15.1
Outer Radiation Boundary Condition (ORBC)
for Computational Space
.452
15.2
Finite Element Method
(FEM)
.452
15.2.1
Circular Fiber
.461
15.2.2
Rectangular Structures
.463
15.2.3
Triangular Dielectric Guides
.466
15.2.4
Elliptical Dielectric Guide
.467
15.2.5
Single Material Fiber Guide
.468
15.2.6
Concluding Remarks
.470
xvi Contents
15.3
Beam Propagation Method (BPM) or Forward Marching
Split-Step Fast Fourier Transform Method
.470
15.3.1
Formulation of the Problem and the Numerical Approach
. 471
15.3.2
Gaussian Beam Propagation in a Radially Inhomogeneous
Fiber
.474
15.3.3
Fiber Couplers
.478
15.3.4
Fiber Tapers and Horns
.485
15.3.5
ω-β
Diagram From BPM
.486
15.3.5.1
The Step-Index Circular Fiber
.491
15.3.5.2
Graded-Index Circular Fiber
.492
15.3.5.3
Rectangular Fiber
.493
15.3.5.4
Elliptical Fiber
.495
15.3.5.5
Triangular Fiber
.495
15.3.5.6
Diffused-Channel Rectangular Waveguide
.496
15.3.5.7
Non-Axisymmetric Graded-Index Fiber
.496
15.4
Finite Difference Time Domain Method (FDTD)
.498
15.4.1
Excitation of a Ribbon Dielectric Waveguide
.498
15.4.2
Ribbon Waveguide Assembled from Dielectric Rods
.499
15.4.3
Dielectric Waveguide Transitions
.500
15.5
Concluding Remarks
.504
References
.506
Subject Index
.509
Author Index
. . 517 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Yeh, Cavour Shimabukuro, Fred |
author_facet | Yeh, Cavour Shimabukuro, Fred |
author_role | aut aut |
author_sort | Yeh, Cavour |
author_variant | c y cy f s fs |
building | Verbundindex |
bvnumber | BV035090700 |
classification_rvk | ZN 4520 |
ctrlnum | (OCoLC)212722007 (DE-599)BVBBV035090700 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01401nam a2200349 c 4500</leader><controlfield tag="001">BV035090700</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081009s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387309292</subfield><subfield code="9">0-387-30929-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387309293</subfield><subfield code="9">978-0-387-30929-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)212722007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035090700</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4520</subfield><subfield code="0">(DE-625)157397:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yeh, Cavour</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The essence of dielectric waveguides</subfield><subfield code="c">C. Yeh ; F. Shimabukuro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 522 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dielektrischer Wellenleiter</subfield><subfield code="0">(DE-588)4149724-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dielektrischer Wellenleiter</subfield><subfield code="0">(DE-588)4149724-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shimabukuro, Fred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2809004&prov=M&dok_var=1&dok_ext=htm</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016758825&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016758825</subfield></datafield></record></collection> |
id | DE-604.BV035090700 |
illustrated | Illustrated |
index_date | 2024-07-02T22:10:33Z |
indexdate | 2024-07-09T21:21:59Z |
institution | BVB |
isbn | 0387309292 9780387309293 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016758825 |
oclc_num | 212722007 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-11 DE-29T |
owner_facet | DE-355 DE-BY-UBR DE-11 DE-29T |
physical | XVI, 522 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Yeh, Cavour Verfasser aut The essence of dielectric waveguides C. Yeh ; F. Shimabukuro New York [u.a.] Springer 2008 XVI, 522 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Dielektrischer Wellenleiter (DE-588)4149724-7 gnd rswk-swf Dielektrischer Wellenleiter (DE-588)4149724-7 s DE-604 Shimabukuro, Fred Verfasser aut http://deposit.dnb.de/cgi-bin/dokserv?id=2809004&prov=M&dok_var=1&dok_ext=htm Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016758825&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Yeh, Cavour Shimabukuro, Fred The essence of dielectric waveguides Dielektrischer Wellenleiter (DE-588)4149724-7 gnd |
subject_GND | (DE-588)4149724-7 |
title | The essence of dielectric waveguides |
title_auth | The essence of dielectric waveguides |
title_exact_search | The essence of dielectric waveguides |
title_exact_search_txtP | The essence of dielectric waveguides |
title_full | The essence of dielectric waveguides C. Yeh ; F. Shimabukuro |
title_fullStr | The essence of dielectric waveguides C. Yeh ; F. Shimabukuro |
title_full_unstemmed | The essence of dielectric waveguides C. Yeh ; F. Shimabukuro |
title_short | The essence of dielectric waveguides |
title_sort | the essence of dielectric waveguides |
topic | Dielektrischer Wellenleiter (DE-588)4149724-7 gnd |
topic_facet | Dielektrischer Wellenleiter |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2809004&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016758825&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yehcavour theessenceofdielectricwaveguides AT shimabukurofred theessenceofdielectricwaveguides |