Data mining for business analytics: concepts, techniques, and applications in R
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley
2018
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Enthält Index |
Beschreibung: | XXIX, 544 Seiten Illustrationen, Diagramme |
ISBN: | 9781118879368 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV044539208 | ||
003 | DE-604 | ||
005 | 20201117 | ||
007 | t | ||
008 | 171016s2018 xxua||| |||| 00||| eng d | ||
020 | |a 9781118879368 |c cloth |9 978-1-118-87936-8 | ||
035 | |a (OCoLC)1001432994 | ||
035 | |a (DE-599)BVBBV044539208 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-1102 |a DE-898 |a DE-M347 |a DE-384 |a DE-739 |a DE-20 |a DE-1049 |a DE-29T |a DE-634 |a DE-473 |a DE-188 | ||
050 | 0 | |a HF5691 | |
082 | 0 | |a 006.3/12 |2 23 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
100 | 1 | |a Shmueli, Galit |d 1971- |e Verfasser |0 (DE-588)137189265 |4 aut | |
245 | 1 | 0 | |a Data mining for business analytics |b concepts, techniques, and applications in R |c Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr. |
264 | 1 | |a Hoboken, NJ |b Wiley |c 2018 | |
300 | |a XXIX, 544 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Enthält Index | ||
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Wirtschaft | |
650 | 4 | |a Business mathematics |x Computer programs | |
650 | 4 | |a Business |x Data processing | |
650 | 4 | |a Data mining | |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensmanagement |0 (DE-588)4561842-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 1 | |a Wissensmanagement |0 (DE-588)4561842-2 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bruce, Peter C. |d 1953- |e Verfasser |0 (DE-588)1104275260 |4 aut | |
700 | 1 | |a Yahav, Inbal |e Verfasser |0 (DE-588)1203765983 |4 aut | |
700 | 1 | |a Patel, Nitin R. |e Verfasser |0 (DE-588)170703592 |4 aut | |
700 | 1 | |a Lichtendahl, Kenneth C. |d 1969- |e Verfasser |0 (DE-588)1138054585 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029938325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-029938325 |
Datensatz im Suchindex
_version_ | 1804177896464449536 |
---|---|
adam_text | ■
Contents___________________________________________________________________________
Foreword by Gareth James x1x
Foreword by Ravi Bapna xxi
Preface to the R Edition xxiii
Acknowledgments xxvii
Part i preliminaries_______________________________________________________________
chapter 1 Introduction 3
1.1 What Is Business Analytics?............................................. 3
1.2 What Is Data Mining?.................................................... 5
1.3 Data Mining and Related Terms .......................................... 5
1.4 Big Data.............................................................. 6
1.5 Data Science ........................................................... 7
1.6 Why Are There So Many Different Methods? ............................... 8
1.7 Terminology and Notation................................................ 9
1.8 Road Maps to This Book............................................... 11
Order of Topics...................................................... 11
Chapter 2 Overview of the Data Mining Process is
2.1 Introduction........................................................... 15
2.2 Core Ideas in Data Mining.............................................. 16
Classification......................................................... 16
Prediction............................................................. 16
Association Rules and Recommendation Systems........................... 16
Predictive Analytics................................................. 17
Data Reduction and Dimension Reduction................................. 17
Data Exploration and Visualization..................................... 17
Supervised and Unsupervised Learning................................... 18
2.3 The Steps in Data Mining............................................. 19
2.4 Preliminary Steps..................................................... 21
Organization of Datasets............................................... 21
Predicting Home Values in the West Roxbury Neighborhood .............. 21
VII
VIII CONTENTS
Loading and Looking at the Data in R........................................... . 22
Sampling from a Database....................................................... 24
Oversampling Rare Events in Classification Tasks............................... 25
Preprocessing and Cleaning the Data ........................................... 26
2.5 Predictive Power and Overfitting................................................. 33
Overfitting .................................................................... 33
Creation and Use of Data Partitions............................................ 35
2.6 Building a Predictive Model...................................................... 38
Modeling Process............................................................... 39
2.7 Using R for Data Mining on a Local Machine...................................... 43
2.8 Automating Data Mining Solutions................................................. 43
Data Mining Software: The State of the Market (by Herb Edelstein).............. 45
Problems............................................................................... 49
Part n data exploration and dimension reduction
chapter 3 Data Visualization 55
3.1 Uses of Data Visualization..................................................... 55
Base R or ggplot?................................................................ 57
3.2 Data Examples.................................................................... 57
Example 1: Boston Housing Data................................................... 57
Example 2: Riders hip on Amtrak Trains......................................... 59
3.3 Basic Charts: Bar Charts, Line Graphs, and Scatter Plots ....................... 59
Distribution Plots: Boxplots and Histograms....................................... 61
Heatmaps: Visualizing Correlations and Missing Values............................. 64
3.4 Multidimensional Visualization................................................... 67
Adding Variables: Color, Size, Shape, Multiple Panels, and Animation........... 67
Manipulations: Rescaling, Aggregation and Hierarchies, Zooming, Filtering .... 70
Reference: Trend Lines and Labels................................................ 74
Scaling up to Large Datasets................................................... 74
Multivariate Plot: Parallel Coordinates Plot. ................................. 75
Interactive Visualization...................................................... 77
3.5 Specialized Visualizations....................................................... 80
Visualizing Networked Data..................................................... 80
Visualizing Hierarchical Data: Treemaps........................................ 82
Visualizing Geographical Data: Map Charts........................................ 83
3.6 Summary: Major Visualizations and Operations, by Data Mining Goal................ 86
Prediction...................................................................... . 86
Classification .................................................................. 86
Time Series Forecasting............................................................ 86
Unsupervised Learning.............................................................. 87
Problems................................................................................ g$
chapter 4 Dimension Reduction 91
4.1 Introduction.................................................................... 91
4.2 Curse of Dimensionality....................................................... 92
CONTENTS IX
4.3 Practical Considerations....................................................... 92
Example 1: House Prices in Boston ............................................. 93
4.4 Data Summaries................................................................. 94
Summary Statistics........................................................... 94
Aggregation and Pivot Tables................................................. 96
4.5 Correlation Analysis......................................................... 97
4.6 Reducing the Number of Categories in Categorical Variables..................... 99
4.7 Converting a Categorical Variable to a Numerical Variable ................. 99
4.8 Principal Components Analysis................................................ 101
Example 2: Breakfast Cereals ..................................................101
Principal Components...........................................................106
Normalizing the Data ..........................................................107
Using Principal Components for Classification and Prediction...................109
4.9 Dimension Reduction Using Regression Models....................................Ill
4.10 Dimension Reduction Using Classification and Regression Trees..................Ill
Problems..............................................................................112
Part m performance evaluation________________________________________________________________
Chapter 5 Evaluating Predictive Performance 117
5.1 Introduction...................................................................117
5.2 Evaluating Predictive Performance..............................................118
Naive Benchmark: The Average ................................................ 118
Prediction Accuracy Measures...................................................119
Comparing Training and Validation Performance..................................121
Lift Chart.....................................................................121
5.3 Judging Classifier Performance.................................................122
Benchmark: The Naive Rule.................................................... 124
Class Separation............................................................. 124
The Confusion (Classification) Matrix..........................................124
Using the Validation Data.................................................... 126
Accuracy Measures..............................................................126
Propensities and Cutoff for Classification ............................. 127
Performance in Case of Unequal Importance of Classes...........................131
Asymmetric Misclassification Costs........................................... 133
Generalization to More Than Two Classes........................................135
5.4 Judging Ranking Performance....................................................136
Lift Charts for Binary Data....................................................136
Decile Lift Charts.............................................................138
Beyond Two Classes.............................................................139
Lift Charts Incorporating Costs and Benefits...................................139
Lift as a Function of Cutoff...................................................140
5.5 Oversampling................................................................. 140
Oversampling the Training Set..................................................144
X CONTENTS
Evaluating Model Performance Using a Non-oversampled Validation Set..........144
Evaluating Model Performance if Only Oversampled Validation Set Exists ..... 144
Problems...........................................................................147
Part iv prediction and classification methods________________________________________________
Chapter 6 Multiple Linear Regression 153
6.1 Introduction.................................................................153
6.2 Explanatory vs. Predictive Modeling .........................................154
6.3 Estimating the Regression Equation and Prediction..............................156
Example: Predicting the Price of Used Toyota Corolla Cars....................156
6.4 Variable Selection in Linear Regression .......................................161
Reducing the Number of Predictors ...........................................161
How to Reduce the Number of Predictors.......................................162
Problems........................................................................... 169
Chapter 7 fc-Nearest Neighbors (feNN) 173
7.1 The A NN Classifier (Categorical Outcome)..................................... 173
Determining Neighbors..........................................................173
Classification Rule........................................................... 174
Example: Riding Mowers.........................................................175
Choosing k.....................................................................176
Setting the Cutoff Value.......................................................179
fc-NN with More Than Two Classes...............................................180
Converting Categorical Variables to Binary Dummies ............................180
7.2 fc-NN for a Numerical Outcome.......................................... 180
7.3 Advantages and Shortcomings of fc-NN Algorithms................................182
Problems...........................................................................184
chapter 8 The Naive Bayes Classifier 187
8.1 Introduction...................................................................187
Cutoff Probability Method..................................................... 188
Conditional Probability....................................................... 188
Example 1: Predicting Fraudulent Financial Reporting...........................188
8.2 Applying the Full (Exact) Bayesian Classifier..................................189
Using the Assign to the Most Probable Class Method..........................190
Using the Cutoff Probability Method...........................................190
Practical Difficulty with the Complete (Exact) Bayes Procedure................190
Solution: Naive Bayes...........................................................291
The Naive Bayes Assumption of Conditional Independence........................192
Using the Cutoff Probability Method.............................................192
Example 2: Predicting Fraudulent Financial Reports, Two Predictors ...........193
Example 3: Predicting Delayed Flights.......................................... 194
8.3 Advantages and Shortcomings of the Naive Bayes Classifier ...................199
Problems............................................................................202
CONTENTS XI
chapter 9 Classification and Regression Trees 205
9.1 Introduction..................................................................... 205
9.2 Classification Trees ..............................................................207
Recursive Partitioning............................................................207
Example 1: Riding Mowers..........................................................207
Measures of Impurity..............................................................210
Tree Structure....................................................................214
Classifying a New Record ....................................................... 214
9.3 Evaluating the Performance of a Classification Tree................................215
Example 2: Acceptance of Personal Loan.......................................... 215
9.4 Avoiding Overfitting............................................................. 216
Stopping Tree Growth: Conditional Inference Trees.................................221
Pruning the Tree..................................................................222
Cross-Validation..................................................................222
Best-Pruned Tree .................................................................224
9.5 Classification Rules from Trees.................................................. 226
9.6 Classification Trees for More Than Two Classes................................... 227
9.7 Regression Trees...................................................................227
Prediction........................................................................228
Measuring Impurity ...............................................................228
Evaluating Performance ...........................................................229
9.8 Improving Prediction: Random Forests and Boosted Trees ............................229
Random Forests.................................................................. 229
Boosted Trees................................................................... 231
9.9 Advantages and Weaknesses of a Tree................................................232
Problems.................................................................................234
Chapter lO Logistic Regression 237
10.1 Introduction.......................................................................237
10.2 The Logistic Regression Model.................................................... 239
10.3 Example: Acceptance of Personal Loan............................................. 240
Model with a Single Predictor.....................................................241
Estimating the Logistic Model from Data: Computing Parameter Estimates .... 243
Interpreting Results in Terms of Odds (for a Profiling Goal)......................244
10.4 Evaluating Classification Performance..............................................247
Variable Selection.............................................................. 248
10.5 Example of Complete Analysis: Predicting Delayed Flights...........................250
Data Preprocessing.............................................................. 251
Model-Fitting and Estimation .....................................................254
Model Interpretation ........................................................... 254
Model Performance ................................................................254
Variable Selection................................................................257
10.6 Appendix: Logistic Regression for Profiling........................................259
Appendix A: Why Linear Regression Is Problematic for a Categorical Outcome . . . 259
XII CONTENTS
Appendix B: Evaluating Explanatory Power.......................................261
Appendix C: Logistic Regression for More Than Two Classes.....................264
Problems.............................................................................268
chapter 1 1 Neural Nets 271
11.1 Introduction...................................................................271
11.2 Concept and Structure of a Neural Network......................................272
11.3 Fitting a Network to Data......................................................273
Example 1: Tiny Dataset...................................................... 273
Computing Output of Nodes......................................................274
Preprocessing the Data.........................................................277
Training the Model.............................................................278
Example 2: Classifying Accident Severity ......................................282
Avoiding Overfitting...........................................................283
Using the Output for Prediction and Classification...................... 283
11.4 Required User Input.......................................................... 285
11.5 Exploring the Relationship Between Predictors and Outcome......................287
11.6 Advantages and Weaknesses of Neural Networks...................................288
Problems............................................................................. 290
chapter 12 Discriminant Analysis 293
12.1 Introduction...................................................................293
Example 1: Riding Mowers.......................................................294
Example 2: Personal Loan Acceptance............................................294
12.2 Distance of a Record from a Class............................................ 296
12.3 Fisher s Linear Classification Functions.......................................297
12.4 Classification Performance of Discriminant Analysis ...........................300
12.5 Prior Probabilities.......................................................... 302
12.6 Unequal Misclassification Costs................................................302
12.7 Classifying More Than Two Classes..............................................303
Example 3: Medical Dispatch to Accident Scenes..................................303
12.8 Advantages and Weaknesses......................................................306
Problems........................................................................ 307
chapter 1 3 Combining Methods: Ensembles and Uplift Modeling 311
13.1 Ensembles......................................................................311
Why Ensembles Can Improve Predictive Power......................................312
Simple Averaging.............................................................. 314
Bagging.........................................................................315
Boosting .......................................................................315
Bagging and Boosting in R ......................................................315
Advantages and Weaknesses of Ensembles..........................................315
13.2 Uplift (Persuasion) Modeling...................................................317
A-B Testing .................................................................. 318
CONTENTS XIII
Uplift....................................................................318
Gathering the Data...........................................................319
A Simple Model...............................................................320
Modeling Individual Uplift...................................................321
Computing Uplift with R......................................................322
Using the Results of an Uplift Model......................................322
13.3 Summary...................................................................324
Problems ..........................................................................325
Part v mining relationships among records_________________________________________________
chapter 1 4 Association Rules and Collaborative Filtering 329
14.1 Association Rules............................................................329
Discovering Association Rules in Transaction Databases.......................330
Example 1: Synthetic Data on Purchases of Phone Faceplates ..................330
Generating Candidate Rules...................................................330
The Apriori Algorithm...................................................... 333
Selecting Strong Rules.......................................................333
Data Format..................................................................335
The Process of Rule Selection................................................336
Interpreting the Results.....................................................337
Rules and Chance......................................................... 339
Example 2: Rules for Similar Book Purchases .................................340
14.2 Collaborative Filtering......................................................342
Data Type and Format.........................................................343
Example 3: Netflix Prize Contest.............................................343
User-Based Collaborative Filtering: People Like You ........................344
Item-Based Collaborative Filtering...........................................347
Advantages and Weaknesses of Collaborative Filtering.........................348
Collaborative Filtering vs. Association Rules................................349
14.3 Summary.................................................................... 351
Problems...........................................................................352
chapter 15 Cluster Analysis 357
15.1 Introduction............................................................... 357
Example: Public Utilities....................................................359
15.2 Measuring Distance Between Two Records.......................................361
Euclidean Distance ..........................................................361
Normalizing Numerical Measurements...........................................362
Other Distance Measures for Numerical Data................................. 362
Distance Measures for Categorical Data ......................................365
Distance Measures for Mixed Data.............................................366
15.3 Measuring Distance Between Two Clusters......................................366
Minimum Distance.............................................................366
Maximum Distance.............................................................366
XIV CONTENTS
Average Distance..............................................................367
Centroid Distance............................*..............................367
15.4 Hierarchical (Agglomerative) Clustering..................................... 368
Single Linkage................................................................369
Complete Linkage..............................................................370
Average Linkage.............................................................370
Centroid Linkage............................................................370
Ward s Method...............................................................370
Dendrograms: Displaying Clustering Process and Results........................371
Validating Clusters...........................................................373
Limitations of Hierarchical Clustering .......................................375
15.5 Non-Hierarchical Clustering: The fc-Means Algorithm...........................376
Choosing the Number of Clusters (k)...........................................377
Problems.......................................................................... 382
Part vi forecasting time series____________________________________________________________
chapter 16 Handling Time Series 387
16.1 Introduction................................................................387
16.2 Descriptive vs. Predictive Modeling...........................................389
16.3 Popular Forecasting Methods in Business.......................................389
Combining Methods.............................................................389
16.4 Time Series Components........................................................390
Example: Ridership on Amtrak Trains......................................... 390
16.5 Data-Partitioning and Performance Evaluation..................................395
Benchmark Performance: Naive Forecasts .......................................395
Generating Future Forecasts...................................................396
Problems.......................................................................... 398
Chapter 17 Regression-Based Forecasting 401
17.1 A Model with Trend............................................................401
Linear Trend..................................................................401
Exponential Trend.............................................................405
Polynomial Trend .............................................................407
17.2 A Model with Seasonality......................................................407
17.3 A Model with Trend and Seasonality............................................411
17.4 Autocorrelation and A RIM A Models........................................... 412
Computing Autocorrelation .....................................................413
Improving Forecasts by Integrating Autocorrelation Information.................416
Evaluating Predictability......................................................420
Problems..........................................................................422
CONTENTS XV
chapter 1 8 Smoothing Methods 433
18.1 Introduction.................................................................433
18.2 Moving Average...............................................................434
Centered Moving Average for Visualization....................................434
Trailing Moving Average for Forecasting......................................435
Choosing Window Width (to).................................................439
18.3 Simple Exponential Smoothing.................................................439
Choosing Smoothing Parameter ex..............................................440
Relation Between Moving Average and Simple Exponential Smoothing.............440
18.4 Advanced Exponential Smoothing...............................................442
Series with a Trend..........................................................442
Series with a Trend and Seasonality . .......................................443
Series with Seasonality (No Trend)...........................................443
Problems......................................................................... 446
Part JVii data analytics__________________________________________________________________
chapter 1 9 Social Network Analytics 455
19.1 Introduction ................................................................455
19.2 Directed vs. Undirected Networks.............................................457
19.3 Visualizing and Analyzing Networks...........................................458
Graph Layout............................................................... 458
Edge List....................................................................460
Adjacency Matrix.............................................................461
Using Network Data in Classification and Prediction..........................461
19.4 Social Data Metrics and Taxonomy........................................... 462
Node-Level Centrality Metrics ...............................................463
Egocentric Network......................................................... 463
Network Metrics..............................................................465
19.5 Using Network Metrics in Prediction and Classification.......................467
Link Prediction............................................................ 467
Entity Resolution............................................................467
Collaborative Filtering.................................................... 468
19.6 Collecting Social Network Data with R........................................471
19.7 Advantages and Disadvantages ................................................474
Problems......................................................................... 476
Chapter 20 Text Mining 479
20.1 Introduction.................................................................479
20.2 The Tabular Representation of Text: Term-Document Matrix and Bag-of--Words . 480
20.3 Bag-of-Words vs. Meaning Extraction at Document Level........................481
20.4 Preprocessing the Text.......................................................482
Tokenization.................................................................484
Text Reduction ..............................................................485
XVI CONTENTS
Presence/Absence vs. Frequency................................................487
Term Frequency-Inverse Document Frequency (TF-IDF)............................487
From Terms to Concepts: Latent Semantic Indexing .............................488
Extracting Meaning............................................................489
20.5 Implementing Data Mining Methods..............................................489
20.6 Example: Online Discussions on Autos and Electronics..........................490
Importing and Labeling the Records............................................490
Text Preprocessing in R.......................................................491
Producing a Concept Matrix....................................................491
Fitting a Predictive Model....................................................492
Prediction....................................................................492
20.7 Summary.......................................................................494
Problems...........................................................................495
Part vih cases_____________________________________________________________________________
CHAPTER 21 Cases 499
21.1 Charles Book Club........................................................... 499
The Book Industry.............................................................499
Database Marketing at Charles.................................................500
Data Mining Techniques........................................................502
Assignment....................................................................504
21.2 German Credit............................................................... 505
Background....................................................................505
Data....................................................................... . 506
Assignment....................................................................507
21.3 Tayko Software Cataloger......................................................510
Background....................................................................510
The Mailing Experiment........................................................510
Data..........................................................................510
Assignment....................................................................512
21.4 Political Persuasion..........................................................513
Background....................................................................513
Predictive Analytics Arrives in US Politics...................................513
Political Targeting...........................................................514
Uplift....................................................................... 514
Data........................................................................ 515
Assignment....................................................................516
21.5 Taxi Cancellations.......................................................... 517
Business Situation............................................................517
Assignment.................................................................. 517
21.6 Segmenting Consumers of Bath Soap.............................................518
Business Situation............................................................518
Key Problems..................................................................519
Data..........................................................................519
CONTENTS XVII
Measuring Brand Loyalty.......................................................519
Assignment................................................................. . 521
21.7 Direct-Mail Fundraising.......................................................521
Background....................................................................521
Data...................................................................... 522
Assignment....................................................................523
21.8 Catalog Cross-Selling . ......................................................524
Background.................................................................. 524
Assignment....................................................................524
21.9 Predicting Bankruptcy.........................................................525
Predicting Corporate Bankruptcy...............................................525
Assignment.................................................................. 526
21.10 Time Series Case: Forecasting Public Transportation Demand...................528
Background....................................................................528
Problem Description...........................................................528
Available Data................................................................528
Assignment Goal...............................................................528
Assignment....................................................................529
Tips and Suggested Steps......................................................529
References 531
Data Files Used in the Book 533
Index
535
|
any_adam_object | 1 |
author | Shmueli, Galit 1971- Bruce, Peter C. 1953- Yahav, Inbal Patel, Nitin R. Lichtendahl, Kenneth C. 1969- |
author_GND | (DE-588)137189265 (DE-588)1104275260 (DE-588)1203765983 (DE-588)170703592 (DE-588)1138054585 |
author_facet | Shmueli, Galit 1971- Bruce, Peter C. 1953- Yahav, Inbal Patel, Nitin R. Lichtendahl, Kenneth C. 1969- |
author_role | aut aut aut aut aut |
author_sort | Shmueli, Galit 1971- |
author_variant | g s gs p c b pc pcb i y iy n r p nr nrp k c l kc kcl |
building | Verbundindex |
bvnumber | BV044539208 |
callnumber-first | H - Social Science |
callnumber-label | HF5691 |
callnumber-raw | HF5691 |
callnumber-search | HF5691 |
callnumber-sort | HF 45691 |
callnumber-subject | HF - Commerce |
classification_rvk | QH 500 ST 530 |
ctrlnum | (OCoLC)1001432994 (DE-599)BVBBV044539208 |
dewey-full | 006.3/12 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/12 |
dewey-search | 006.3/12 |
dewey-sort | 16.3 212 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02281nam a2200529 c 4500</leader><controlfield tag="001">BV044539208</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">171016s2018 xxua||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781118879368</subfield><subfield code="c">cloth</subfield><subfield code="9">978-1-118-87936-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1001432994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV044539208</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HF5691</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shmueli, Galit</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137189265</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data mining for business analytics</subfield><subfield code="b">concepts, techniques, and applications in R</subfield><subfield code="c">Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley</subfield><subfield code="c">2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIX, 544 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Enthält Index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business mathematics</subfield><subfield code="x">Computer programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Business</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensmanagement</subfield><subfield code="0">(DE-588)4561842-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wissensmanagement</subfield><subfield code="0">(DE-588)4561842-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruce, Peter C.</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1104275260</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yahav, Inbal</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1203765983</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Patel, Nitin R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170703592</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lichtendahl, Kenneth C.</subfield><subfield code="d">1969-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1138054585</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029938325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-029938325</subfield></datafield></record></collection> |
id | DE-604.BV044539208 |
illustrated | Illustrated |
indexdate | 2024-07-10T07:55:22Z |
institution | BVB |
isbn | 9781118879368 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-029938325 |
oclc_num | 1001432994 |
open_access_boolean | |
owner | DE-1102 DE-898 DE-BY-UBR DE-M347 DE-384 DE-739 DE-20 DE-1049 DE-29T DE-634 DE-473 DE-BY-UBG DE-188 |
owner_facet | DE-1102 DE-898 DE-BY-UBR DE-M347 DE-384 DE-739 DE-20 DE-1049 DE-29T DE-634 DE-473 DE-BY-UBG DE-188 |
physical | XXIX, 544 Seiten Illustrationen, Diagramme |
publishDate | 2018 |
publishDateSearch | 2018 |
publishDateSort | 2018 |
publisher | Wiley |
record_format | marc |
spelling | Shmueli, Galit 1971- Verfasser (DE-588)137189265 aut Data mining for business analytics concepts, techniques, and applications in R Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr. Hoboken, NJ Wiley 2018 XXIX, 544 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Enthält Index Datenverarbeitung Wirtschaft Business mathematics Computer programs Business Data processing Data mining Data Mining (DE-588)4428654-5 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Wissensmanagement (DE-588)4561842-2 gnd rswk-swf Data Mining (DE-588)4428654-5 s Wissensmanagement (DE-588)4561842-2 s R Programm (DE-588)4705956-4 s DE-604 Bruce, Peter C. 1953- Verfasser (DE-588)1104275260 aut Yahav, Inbal Verfasser (DE-588)1203765983 aut Patel, Nitin R. Verfasser (DE-588)170703592 aut Lichtendahl, Kenneth C. 1969- Verfasser (DE-588)1138054585 aut Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029938325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Shmueli, Galit 1971- Bruce, Peter C. 1953- Yahav, Inbal Patel, Nitin R. Lichtendahl, Kenneth C. 1969- Data mining for business analytics concepts, techniques, and applications in R Datenverarbeitung Wirtschaft Business mathematics Computer programs Business Data processing Data mining Data Mining (DE-588)4428654-5 gnd R Programm (DE-588)4705956-4 gnd Wissensmanagement (DE-588)4561842-2 gnd |
subject_GND | (DE-588)4428654-5 (DE-588)4705956-4 (DE-588)4561842-2 |
title | Data mining for business analytics concepts, techniques, and applications in R |
title_auth | Data mining for business analytics concepts, techniques, and applications in R |
title_exact_search | Data mining for business analytics concepts, techniques, and applications in R |
title_full | Data mining for business analytics concepts, techniques, and applications in R Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr. |
title_fullStr | Data mining for business analytics concepts, techniques, and applications in R Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr. |
title_full_unstemmed | Data mining for business analytics concepts, techniques, and applications in R Galit Shmueli, Peter C. Bruce, Inbal Yahav, Nitin R. Patel, Kenneth C. Lichtendahl, Jr. |
title_short | Data mining for business analytics |
title_sort | data mining for business analytics concepts techniques and applications in r |
title_sub | concepts, techniques, and applications in R |
topic | Datenverarbeitung Wirtschaft Business mathematics Computer programs Business Data processing Data mining Data Mining (DE-588)4428654-5 gnd R Programm (DE-588)4705956-4 gnd Wissensmanagement (DE-588)4561842-2 gnd |
topic_facet | Datenverarbeitung Wirtschaft Business mathematics Computer programs Business Data processing Data mining Data Mining R Programm Wissensmanagement |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=029938325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT shmueligalit dataminingforbusinessanalyticsconceptstechniquesandapplicationsinr AT brucepeterc dataminingforbusinessanalyticsconceptstechniquesandapplicationsinr AT yahavinbal dataminingforbusinessanalyticsconceptstechniquesandapplicationsinr AT patelnitinr dataminingforbusinessanalyticsconceptstechniquesandapplicationsinr AT lichtendahlkennethc dataminingforbusinessanalyticsconceptstechniquesandapplicationsinr |