Identifying and minimizing measurement invariance among intersectional groups: the alignment method applied to multi-category items

This Element demonstrates how and why the alignment method can advance measurement fairness in developmental science. It explains its application to multi-category items in an accessible way, offering sample code and demonstrating an R package that facilitates interpretation of such items' mult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gordon, Rachel A. (VerfasserIn), Wang, Tianxiu (VerfasserIn), Nguyen, Hai (VerfasserIn), Aloe, Ariel M. 1975- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 2023
Schriftenreihe:Cambridge elements
Schlagworte:
Online-Zugang:BSB01
UBG01
Volltext
Zusammenfassung:This Element demonstrates how and why the alignment method can advance measurement fairness in developmental science. It explains its application to multi-category items in an accessible way, offering sample code and demonstrating an R package that facilitates interpretation of such items' multiple thresholds. It features the implications for group mean differences when differences in the thresholds between categories are ignored because items are treated as continuous, using an example of intersectional groups defined by assigned sex and race/ethnicity. It demonstrates the interpretation of item-level partial non-invariance results and their implications for group-level differences and encourages substantive theorizing regarding measurement fairness
Beschreibung:Also issued in print: 2023. - Includes bibliographical references
Beschreibung:1 Online-Ressource (67 Seiten) Illustrationen
ISBN:9781009357784
DOI:10.1017/9781009357784

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen