The numerical solution of systems of polynomials arising in engineering and science /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackensack, NJ :
World Scientific,
2005.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xxii, 401 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 379-395) and index. |
ISBN: | 9812567720 9789812567727 9789812561848 9812561846 1281880825 9781281880826 9786611880828 6611880828 |
Internformat
MARC
LEADER | 00000cam a22000004a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocm63201945 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 060131s2005 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d YDXCP |d OCLCG |d OCLCQ |d IDEBK |d OCLCQ |d TUU |d OCLCQ |d UV0 |d EBLCP |d DKDLA |d ADU |d E7B |d OCLCO |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCQ |d OCLCF |d OCLCQ |d AGLDB |d MOR |d PIFBR |d ZCU |d OCLCQ |d MERUC |d OCLCQ |d WY@ |d U3W |d LUE |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d NRAMU |d VT2 |d OCLCQ |d AU@ |d WYU |d JBG |d DKC |d OCLCQ |d K6U |d OCLCQ |d VLY |d SFB |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO |d OCLCQ | ||
019 | |a 123413452 |a 229178341 |a 437160113 |a 474147392 |a 614851395 |a 647461300 |a 722426341 |a 748530944 |a 815743908 |a 921961057 |a 988454268 |a 991958228 |a 992085991 |a 1037775668 |a 1038607228 |a 1045536002 |a 1058271833 |a 1081231324 |a 1125373158 |a 1136374831 |a 1162400415 | ||
020 | |a 9812567720 |q (electronic bk.) | ||
020 | |a 9789812567727 |q (electronic bk.) | ||
020 | |a 9789812561848 | ||
020 | |a 9812561846 | ||
020 | |a 1281880825 | ||
020 | |a 9781281880826 | ||
020 | |a 9786611880828 | ||
020 | |a 6611880828 | ||
035 | |a (OCoLC)63201945 |z (OCoLC)123413452 |z (OCoLC)229178341 |z (OCoLC)437160113 |z (OCoLC)474147392 |z (OCoLC)614851395 |z (OCoLC)647461300 |z (OCoLC)722426341 |z (OCoLC)748530944 |z (OCoLC)815743908 |z (OCoLC)921961057 |z (OCoLC)988454268 |z (OCoLC)991958228 |z (OCoLC)992085991 |z (OCoLC)1037775668 |z (OCoLC)1038607228 |z (OCoLC)1045536002 |z (OCoLC)1058271833 |z (OCoLC)1081231324 |z (OCoLC)1125373158 |z (OCoLC)1136374831 |z (OCoLC)1162400415 | ||
050 | 4 | |a QA161.P59 |b S65 2005eb | |
072 | 7 | |a MAT |x 002030 |2 bisacsh | |
072 | 7 | |a PHR |2 bicssc | |
082 | 7 | |a 512/.9422 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Sommese, Andrew John. |1 https://id.oclc.org/worldcat/entity/E39PBJbWxJ47CYbXdCKkx9c773 |0 http://id.loc.gov/authorities/names/n84145098 | |
245 | 1 | 4 | |a The numerical solution of systems of polynomials arising in engineering and science / |c by Andrew J. Sommese and Charles W. Wampler, II. |
260 | |a Hackensack, NJ : |b World Scientific, |c 2005. | ||
300 | |a 1 online resource (xxii, 401 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 379-395) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover -- Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gr246;bner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheaters Homotopy -- 7.9 Exercises -- Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing. | |
546 | |a English. | ||
650 | 0 | |a Polynomials. |0 http://id.loc.gov/authorities/subjects/sh85104702 | |
650 | 6 | |a Polynômes. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Elementary. |2 bisacsh | |
650 | 7 | |a Polynomials |2 fast | |
700 | 1 | |a Wampler, Charles Weldon, |c II. |1 https://id.oclc.org/worldcat/entity/E39PCjHkkPC8R7qfKBrKX4YbQy |0 http://id.loc.gov/authorities/names/no2005078521 | |
776 | 0 | 8 | |i Print version: |a Sommese, Andrew John. |t Numerical solution of systems of polynomials arising in engineering and science. |d Hackensack, NJ : World Scientific, 2005 |z 9812561846 |w (DLC) 2005296564 |w (OCoLC)60776424 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=148565 |3 Volltext |
938 | |a EBL - Ebook Library |b EBLB |n EBL244553 | ||
938 | |a ebrary |b EBRY |n ebr10106581 | ||
938 | |a EBSCOhost |b EBSC |n 148565 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 188082 | ||
938 | |a YBP Library Services |b YANK |n 2407735 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocm63201945 |
---|---|
_version_ | 1816881633603616768 |
adam_text | |
any_adam_object | |
author | Sommese, Andrew John |
author2 | Wampler, Charles Weldon, II |
author2_role | |
author2_variant | c w w cw cww |
author_GND | http://id.loc.gov/authorities/names/n84145098 http://id.loc.gov/authorities/names/no2005078521 |
author_facet | Sommese, Andrew John Wampler, Charles Weldon, II |
author_role | |
author_sort | Sommese, Andrew John |
author_variant | a j s aj ajs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA161 |
callnumber-raw | QA161.P59 S65 2005eb |
callnumber-search | QA161.P59 S65 2005eb |
callnumber-sort | QA 3161 P59 S65 42005EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover -- Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gr246;bner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheaters Homotopy -- 7.9 Exercises -- Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing. |
ctrlnum | (OCoLC)63201945 |
dewey-full | 512/.9422 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.9422 |
dewey-search | 512/.9422 |
dewey-sort | 3512 49422 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06526cam a22005774a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocm63201945 </controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">060131s2005 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UV0</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DKDLA</subfield><subfield code="d">ADU</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFBR</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WY@</subfield><subfield code="d">U3W</subfield><subfield code="d">LUE</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">SFB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">123413452</subfield><subfield code="a">229178341</subfield><subfield code="a">437160113</subfield><subfield code="a">474147392</subfield><subfield code="a">614851395</subfield><subfield code="a">647461300</subfield><subfield code="a">722426341</subfield><subfield code="a">748530944</subfield><subfield code="a">815743908</subfield><subfield code="a">921961057</subfield><subfield code="a">988454268</subfield><subfield code="a">991958228</subfield><subfield code="a">992085991</subfield><subfield code="a">1037775668</subfield><subfield code="a">1038607228</subfield><subfield code="a">1045536002</subfield><subfield code="a">1058271833</subfield><subfield code="a">1081231324</subfield><subfield code="a">1125373158</subfield><subfield code="a">1136374831</subfield><subfield code="a">1162400415</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812567720</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812567727</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812561848</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812561846</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281880825</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281880826</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611880828</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611880828</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)63201945</subfield><subfield code="z">(OCoLC)123413452</subfield><subfield code="z">(OCoLC)229178341</subfield><subfield code="z">(OCoLC)437160113</subfield><subfield code="z">(OCoLC)474147392</subfield><subfield code="z">(OCoLC)614851395</subfield><subfield code="z">(OCoLC)647461300</subfield><subfield code="z">(OCoLC)722426341</subfield><subfield code="z">(OCoLC)748530944</subfield><subfield code="z">(OCoLC)815743908</subfield><subfield code="z">(OCoLC)921961057</subfield><subfield code="z">(OCoLC)988454268</subfield><subfield code="z">(OCoLC)991958228</subfield><subfield code="z">(OCoLC)992085991</subfield><subfield code="z">(OCoLC)1037775668</subfield><subfield code="z">(OCoLC)1038607228</subfield><subfield code="z">(OCoLC)1045536002</subfield><subfield code="z">(OCoLC)1058271833</subfield><subfield code="z">(OCoLC)1081231324</subfield><subfield code="z">(OCoLC)1125373158</subfield><subfield code="z">(OCoLC)1136374831</subfield><subfield code="z">(OCoLC)1162400415</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA161.P59</subfield><subfield code="b">S65 2005eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHR</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.9422</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sommese, Andrew John.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJbWxJ47CYbXdCKkx9c773</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84145098</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The numerical solution of systems of polynomials arising in engineering and science /</subfield><subfield code="c">by Andrew J. Sommese and Charles W. Wampler, II.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2005.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 401 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 379-395) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gr246;bner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheaters Homotopy -- 7.9 Exercises -- Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Polynomials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85104702</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Polynômes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Elementary.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polynomials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wampler, Charles Weldon,</subfield><subfield code="c">II.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHkkPC8R7qfKBrKX4YbQy</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2005078521</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sommese, Andrew John.</subfield><subfield code="t">Numerical solution of systems of polynomials arising in engineering and science.</subfield><subfield code="d">Hackensack, NJ : World Scientific, 2005</subfield><subfield code="z">9812561846</subfield><subfield code="w">(DLC) 2005296564</subfield><subfield code="w">(OCoLC)60776424</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=148565</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL244553</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10106581</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">148565</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">188082</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">2407735</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocm63201945 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:15:49Z |
institution | BVB |
isbn | 9812567720 9789812567727 9789812561848 9812561846 1281880825 9781281880826 9786611880828 6611880828 |
language | English |
oclc_num | 63201945 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxii, 401 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | World Scientific, |
record_format | marc |
spelling | Sommese, Andrew John. https://id.oclc.org/worldcat/entity/E39PBJbWxJ47CYbXdCKkx9c773 http://id.loc.gov/authorities/names/n84145098 The numerical solution of systems of polynomials arising in engineering and science / by Andrew J. Sommese and Charles W. Wampler, II. Hackensack, NJ : World Scientific, 2005. 1 online resource (xxii, 401 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 379-395) and index. Print version record. Cover -- Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gr246;bner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheaters Homotopy -- 7.9 Exercises -- Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing. English. Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Polynômes. MATHEMATICS Algebra Elementary. bisacsh Polynomials fast Wampler, Charles Weldon, II. https://id.oclc.org/worldcat/entity/E39PCjHkkPC8R7qfKBrKX4YbQy http://id.loc.gov/authorities/names/no2005078521 Print version: Sommese, Andrew John. Numerical solution of systems of polynomials arising in engineering and science. Hackensack, NJ : World Scientific, 2005 9812561846 (DLC) 2005296564 (OCoLC)60776424 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=148565 Volltext |
spellingShingle | Sommese, Andrew John The numerical solution of systems of polynomials arising in engineering and science / Cover -- Preface -- Contents -- Conventions -- PART I Background -- Chapter 1 Polynomial Systems -- 1.1 Polynomials in One Variable -- 1.2 Multivariate Polynomial Systems -- 1.3 Trigonometric Equations as Polynomials -- 1.4 Solution Sets -- 1.5 Solution by Continuation -- 1.6 Overview -- 1.7 Exercises -- Chapter 2 Homotopy Continuation -- 2.1 Continuation for Polynomials in One Variable -- 2.2 Complex Versus Real Solutions -- 2.3 Path Tracking -- 2.4 Exercises -- Chapter 3 Projective Spaces -- 3.1 Motivation: Quadratic Equations -- 3.2 Definition of Projective Space -- 3.3 The Projective Line P1 -- 3.4 The Projective Plane P2 -- 3.5 Projective Algebraic Sets -- 3.6 Multiprojective Space -- 3.7 Tracking Solutions to Infinity -- 3.8 Exercises -- Chapter 4 Genericity and Probability One -- 4.1 Generic Points -- 4.2 Example: Generic Lines -- 4.3 Probabilistic Null Test -- 4.4 Algebraic Probability One -- 4.5 Numerical Certainty -- 4.6 Other Approaches to Genericity -- 4.7 Final Remarks -- 4.8 Exercises -- Chapter 5 Polynomials of One Variable -- 5.1 Some Algebraic Facts about Polynomials of One Complex Variable -- 5.2 Some Analytic Facts about Polynomials of One Complex Variable (Optional) -- 5.3 Some Numerical Aspects of Polynomials of One Variable -- 5.4 Exercises -- Chapter 6 Other Methods -- 6.1 Exclusion Methods -- 6.2 Elimination Methods -- 6.3 Gr246;bner Methods -- 6.4 More Methods -- 6.5 Floating Point vs. Exact Arithmetic -- 6.6 Discussion -- 6.7 Exercises -- PART II Isolated Solutions -- Chapter 7 Coefficient-Parameter Homotopy -- 7.1 Coefficient-Parameter Theory -- 7.2 Parameter Homotopy in Application -- 7.3 An Illustrative Example: Triangles -- 7.4 Nested Parameter Homotopies -- 7.5 Side Conditions -- 7.6 Homotopies that Respect Symmetry Groups -- 7.7 Case Study: Stewart-Gough Platforms -- 7.8 Historical Note: The Cheaters Homotopy -- 7.9 Exercises -- Chapter 8 Polynomial Structures -- 8.1 A Hierarchy of Structures -- 8.2 Notation -- 8.3 Homotopy Paths for Linearly Parameterized Families -- 8.4 Product Homotopies -- 8.5 Polytope Structures -- 8.6 A Summarizing Example -- 8.7 Exercises -- Chapter 9 Case Studies -- 9.1 Nash Equilibria -- 9.2 Chemical Equilibrium -- 9.3 Stewart-Gough Forward Kinematics -- 9.4 Six-Revolute Serial-Link Robots -- 9.5 Planar Seven-Bar Structures -- 9.6 Four-Bar Linkage Design -- 9.7 Exercises -- Chapter 10 Endpoint Estimation -- 10.1 Nonsingular Endpoints -- 10.2 Singular Endpoints -- 10.3 Singular Endgames -- 10.4 Losing the Endgame -- 10.5 Deflation of Isolated Singularities -- 10.6 Exercises -- Chapter 11 Checking Results and Other Implementation Tips -- 11.1 Checks -- 11.2 Corrective Actions -- 11.3 Exercises -- PART III Positive Dimensional Solutions -- Chapter 12 Basic Algebraic Geometry -- 12.1 Affine Algebraic Sets -- 12.2 The Irreducible Decomposition for Affine Algebraic Sets -- 12.3 Further Remarks on Projective Algebraic Sets -- 12.4 Quasiprojective Algebraic Sets -- 12.5 Constructible Algebraic Sets -- 12.6 Multiplicity -- 12.7 Exercises -- Chapter 13 Basic Numerical Algebraic Geometry -- 13.1 Introduction to Witness Sets -- 13.2 Linear Slicing. Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Polynômes. MATHEMATICS Algebra Elementary. bisacsh Polynomials fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85104702 |
title | The numerical solution of systems of polynomials arising in engineering and science / |
title_auth | The numerical solution of systems of polynomials arising in engineering and science / |
title_exact_search | The numerical solution of systems of polynomials arising in engineering and science / |
title_full | The numerical solution of systems of polynomials arising in engineering and science / by Andrew J. Sommese and Charles W. Wampler, II. |
title_fullStr | The numerical solution of systems of polynomials arising in engineering and science / by Andrew J. Sommese and Charles W. Wampler, II. |
title_full_unstemmed | The numerical solution of systems of polynomials arising in engineering and science / by Andrew J. Sommese and Charles W. Wampler, II. |
title_short | The numerical solution of systems of polynomials arising in engineering and science / |
title_sort | numerical solution of systems of polynomials arising in engineering and science |
topic | Polynomials. http://id.loc.gov/authorities/subjects/sh85104702 Polynômes. MATHEMATICS Algebra Elementary. bisacsh Polynomials fast |
topic_facet | Polynomials. Polynômes. MATHEMATICS Algebra Elementary. Polynomials |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=148565 |
work_keys_str_mv | AT sommeseandrewjohn thenumericalsolutionofsystemsofpolynomialsarisinginengineeringandscience AT wamplercharlesweldon thenumericalsolutionofsystemsofpolynomialsarisinginengineeringandscience AT sommeseandrewjohn numericalsolutionofsystemsofpolynomialsarisinginengineeringandscience AT wamplercharlesweldon numericalsolutionofsystemsofpolynomialsarisinginengineeringandscience |