Between the spreadsheets: classifying and fixing dirty data
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Facet Publishing
2021
|
Schlagworte: | |
Online-Zugang: | BSB01 FHN01 TUM01 Volltext |
Beschreibung: | Cover -- Praise for Between the Spreadsheets -- Title Page -- Copyright -- Contents -- Figures -- Tables -- Acknowledgements -- Abbreviations -- Introduction -- 1 The Dangers of Dirty Data -- What is dirty data? -- The consequences of dirty data -- How to ensure data accuracy -- How to maintain and spot-check your data -- Conclusion -- 2 Supplier Normalisation -- What is supplier normalisation? -- Normalisation best practice and rules -- Normalising suppliers in Excel -- Automating normalisation in Excel -- Conclusion -- 3 Taxonomies -- What is a taxonomy? -- Why do I need a taxonomy? Why not use GL codes? -- What is a good/bad taxonomy? -- Off-the-shelf versus custom -- How to build a spend taxonomy -- Conclusion -- 4 Spend Data Classification -- What is spend data classification? -- Classification best practice -- Classifying data in Excel -- Updating new data with existing classified data -- Conclusion -- 5 Basic Data Cleansing -- Cleansing personal data -- Cleansing names in Excel -- Cleansing addresses in Excel -- Conclusion -- 6 Other Methodologies -- Alternative tools -- Omniscope -- Artificial intelligence (AI), automation and machine learning (ML) -- Data cleansing tools -- Conclusion -- 7 The Dirty Data Maturity Model -- The dirty data maturity model -- Dirty data -- Declassed data -- Distributed data -- Disordered data -- Dirt-free data -- Conclusion -- 8 Data Horror Stories -- Scenario: Edinburgh children's hospital -- Scenario: Ted Baker -- Stories of the common data people -- Final thoughts -- Summary -- Dirty data -- COAT -- Normalisation -- Taxonomies -- Data classification -- Data cleansing -- Data tools -- Data maintenance -- And, of course, the horror stories -- References -- Index. - Title from publisher's bibliographic system (viewed on 09 Nov 2021) |
Beschreibung: | 1 Online-Ressource (xxii, 158 Seiten) |
ISBN: | 9781783305049 9781783305230 |
DOI: | 10.29085/9781783305049 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047655248 | ||
003 | DE-604 | ||
005 | 20230901 | ||
007 | cr|uuu---uuuuu | ||
008 | 211228s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781783305049 |c PDF |9 978-1-78330-504-9 | ||
020 | |a 9781783305230 |c ePub |9 978-1-78330-523-0 | ||
024 | 7 | |a 10.29085/9781783305049 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781783305049 | ||
035 | |a (OCoLC)1291616825 | ||
035 | |a (DE-599)BVBBV047655248 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-91 | ||
082 | 0 | |a 005.7565 | |
084 | |a AN 93400 |0 (DE-625)6757: |2 rvk | ||
084 | |a AN 93200 |0 (DE-625)6755: |2 rvk | ||
084 | |a AN 93500 |0 (DE-625)159856: |2 rvk | ||
100 | 1 | |a Walsh, Susan |d ca. 20./21. Jh. |e Verfasser |0 (DE-588)1248540093 |4 aut | |
245 | 1 | 0 | |a Between the spreadsheets |b classifying and fixing dirty data |c Susan Walsh |
264 | 1 | |a London |b Facet Publishing |c 2021 | |
300 | |a 1 Online-Ressource (xxii, 158 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Cover -- Praise for Between the Spreadsheets -- Title Page -- Copyright -- Contents -- Figures -- Tables -- Acknowledgements -- Abbreviations -- Introduction -- 1 The Dangers of Dirty Data -- What is dirty data? -- The consequences of dirty data -- How to ensure data accuracy -- How to maintain and spot-check your data -- Conclusion -- 2 Supplier Normalisation -- What is supplier normalisation? -- Normalisation best practice and rules -- Normalising suppliers in Excel -- Automating normalisation in Excel -- Conclusion -- 3 Taxonomies -- What is a taxonomy? -- Why do I need a taxonomy? Why not use GL codes? -- What is a good/bad taxonomy? -- Off-the-shelf versus custom -- How to build a spend taxonomy -- Conclusion -- 4 Spend Data Classification -- What is spend data classification? -- Classification best practice -- Classifying data in Excel -- Updating new data with existing classified data -- Conclusion -- 5 Basic Data Cleansing -- Cleansing personal data -- Cleansing names in Excel -- Cleansing addresses in Excel -- Conclusion -- 6 Other Methodologies -- Alternative tools -- Omniscope -- Artificial intelligence (AI), automation and machine learning (ML) -- Data cleansing tools -- Conclusion -- 7 The Dirty Data Maturity Model -- The dirty data maturity model -- Dirty data -- Declassed data -- Distributed data -- Disordered data -- Dirt-free data -- Conclusion -- 8 Data Horror Stories -- Scenario: Edinburgh children's hospital -- Scenario: Ted Baker -- Stories of the common data people -- Final thoughts -- Summary -- Dirty data -- COAT -- Normalisation -- Taxonomies -- Data classification -- Data cleansing -- Data tools -- Data maintenance -- And, of course, the horror stories -- References -- Index. - Title from publisher's bibliographic system (viewed on 09 Nov 2021) | ||
650 | 4 | |a Database management | |
650 | 4 | |a Databases / Quality control | |
650 | 4 | |a Database searching | |
650 | 4 | |a Electronic spreadsheets | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-78330-503-2 |
856 | 4 | 0 | |u https://doi.org/10.29085/9781783305049 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033040191 | ||
966 | e | |u https://doi.org/10.29085/9781783305049 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.29085/9781783305049 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.29085/9781783305049 |l TUM01 |p ZDB-20-CBO |q TUM_Paketkauf_2021 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804183122362761216 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Walsh, Susan ca. 20./21. Jh |
author_GND | (DE-588)1248540093 |
author_facet | Walsh, Susan ca. 20./21. Jh |
author_role | aut |
author_sort | Walsh, Susan ca. 20./21. Jh |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV047655248 |
classification_rvk | AN 93400 AN 93200 AN 93500 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781783305049 (OCoLC)1291616825 (DE-599)BVBBV047655248 |
dewey-full | 005.7565 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7565 |
dewey-search | 005.7565 |
dewey-sort | 15.7565 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines Informatik |
discipline_str_mv | Allgemeines Informatik |
doi_str_mv | 10.29085/9781783305049 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03620nmm a2200469zc 4500</leader><controlfield tag="001">BV047655248</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230901 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">211228s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783305049</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-78330-504-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781783305230</subfield><subfield code="c">ePub</subfield><subfield code="9">978-1-78330-523-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.29085/9781783305049</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781783305049</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1291616825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047655248</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7565</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AN 93400</subfield><subfield code="0">(DE-625)6757:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AN 93200</subfield><subfield code="0">(DE-625)6755:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AN 93500</subfield><subfield code="0">(DE-625)159856:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walsh, Susan</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1248540093</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Between the spreadsheets</subfield><subfield code="b">classifying and fixing dirty data</subfield><subfield code="c">Susan Walsh</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Facet Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxii, 158 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover -- Praise for Between the Spreadsheets -- Title Page -- Copyright -- Contents -- Figures -- Tables -- Acknowledgements -- Abbreviations -- Introduction -- 1 The Dangers of Dirty Data -- What is dirty data? -- The consequences of dirty data -- How to ensure data accuracy -- How to maintain and spot-check your data -- Conclusion -- 2 Supplier Normalisation -- What is supplier normalisation? -- Normalisation best practice and rules -- Normalising suppliers in Excel -- Automating normalisation in Excel -- Conclusion -- 3 Taxonomies -- What is a taxonomy? -- Why do I need a taxonomy? Why not use GL codes? -- What is a good/bad taxonomy? -- Off-the-shelf versus custom -- How to build a spend taxonomy -- Conclusion -- 4 Spend Data Classification -- What is spend data classification? -- Classification best practice -- Classifying data in Excel -- Updating new data with existing classified data -- Conclusion -- 5 Basic Data Cleansing -- Cleansing personal data -- Cleansing names in Excel -- Cleansing addresses in Excel -- Conclusion -- 6 Other Methodologies -- Alternative tools -- Omniscope -- Artificial intelligence (AI), automation and machine learning (ML) -- Data cleansing tools -- Conclusion -- 7 The Dirty Data Maturity Model -- The dirty data maturity model -- Dirty data -- Declassed data -- Distributed data -- Disordered data -- Dirt-free data -- Conclusion -- 8 Data Horror Stories -- Scenario: Edinburgh children's hospital -- Scenario: Ted Baker -- Stories of the common data people -- Final thoughts -- Summary -- Dirty data -- COAT -- Normalisation -- Taxonomies -- Data classification -- Data cleansing -- Data tools -- Data maintenance -- And, of course, the horror stories -- References -- Index. - Title from publisher's bibliographic system (viewed on 09 Nov 2021)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database management</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Databases / Quality control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Database searching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic spreadsheets</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-78330-503-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.29085/9781783305049</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033040191</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.29085/9781783305049</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.29085/9781783305049</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.29085/9781783305049</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2021</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047655248 |
illustrated | Not Illustrated |
index_date | 2024-07-03T18:50:57Z |
indexdate | 2024-07-10T09:18:25Z |
institution | BVB |
isbn | 9781783305049 9781783305230 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033040191 |
oclc_num | 1291616825 |
open_access_boolean | |
owner | DE-12 DE-92 DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxii, 158 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Paketkauf_2021 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Facet Publishing |
record_format | marc |
spelling | Walsh, Susan ca. 20./21. Jh. Verfasser (DE-588)1248540093 aut Between the spreadsheets classifying and fixing dirty data Susan Walsh London Facet Publishing 2021 1 Online-Ressource (xxii, 158 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Praise for Between the Spreadsheets -- Title Page -- Copyright -- Contents -- Figures -- Tables -- Acknowledgements -- Abbreviations -- Introduction -- 1 The Dangers of Dirty Data -- What is dirty data? -- The consequences of dirty data -- How to ensure data accuracy -- How to maintain and spot-check your data -- Conclusion -- 2 Supplier Normalisation -- What is supplier normalisation? -- Normalisation best practice and rules -- Normalising suppliers in Excel -- Automating normalisation in Excel -- Conclusion -- 3 Taxonomies -- What is a taxonomy? -- Why do I need a taxonomy? Why not use GL codes? -- What is a good/bad taxonomy? -- Off-the-shelf versus custom -- How to build a spend taxonomy -- Conclusion -- 4 Spend Data Classification -- What is spend data classification? -- Classification best practice -- Classifying data in Excel -- Updating new data with existing classified data -- Conclusion -- 5 Basic Data Cleansing -- Cleansing personal data -- Cleansing names in Excel -- Cleansing addresses in Excel -- Conclusion -- 6 Other Methodologies -- Alternative tools -- Omniscope -- Artificial intelligence (AI), automation and machine learning (ML) -- Data cleansing tools -- Conclusion -- 7 The Dirty Data Maturity Model -- The dirty data maturity model -- Dirty data -- Declassed data -- Distributed data -- Disordered data -- Dirt-free data -- Conclusion -- 8 Data Horror Stories -- Scenario: Edinburgh children's hospital -- Scenario: Ted Baker -- Stories of the common data people -- Final thoughts -- Summary -- Dirty data -- COAT -- Normalisation -- Taxonomies -- Data classification -- Data cleansing -- Data tools -- Data maintenance -- And, of course, the horror stories -- References -- Index. - Title from publisher's bibliographic system (viewed on 09 Nov 2021) Database management Databases / Quality control Database searching Electronic spreadsheets Erscheint auch als Druck-Ausgabe, Paperback 978-1-78330-503-2 https://doi.org/10.29085/9781783305049 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Walsh, Susan ca. 20./21. Jh Between the spreadsheets classifying and fixing dirty data Database management Databases / Quality control Database searching Electronic spreadsheets |
title | Between the spreadsheets classifying and fixing dirty data |
title_auth | Between the spreadsheets classifying and fixing dirty data |
title_exact_search | Between the spreadsheets classifying and fixing dirty data |
title_exact_search_txtP | Between the spreadsheets classifying and fixing dirty data |
title_full | Between the spreadsheets classifying and fixing dirty data Susan Walsh |
title_fullStr | Between the spreadsheets classifying and fixing dirty data Susan Walsh |
title_full_unstemmed | Between the spreadsheets classifying and fixing dirty data Susan Walsh |
title_short | Between the spreadsheets |
title_sort | between the spreadsheets classifying and fixing dirty data |
title_sub | classifying and fixing dirty data |
topic | Database management Databases / Quality control Database searching Electronic spreadsheets |
topic_facet | Database management Databases / Quality control Database searching Electronic spreadsheets |
url | https://doi.org/10.29085/9781783305049 |
work_keys_str_mv | AT walshsusan betweenthespreadsheetsclassifyingandfixingdirtydata |