Chemical reaction engineering and reactor technology:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
CRC Press/Taylor & Francis
2011
|
Schriftenreihe: | Chemical industries
125 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXXI, 615 S. Ill., graph. Darst. |
ISBN: | 1420092685 9781420092684 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035460513 | ||
003 | DE-604 | ||
005 | 20110114 | ||
007 | t | ||
008 | 090429s2011 ad|| |||| 00||| eng d | ||
010 | |a 2009012816 | ||
020 | |a 1420092685 |9 1-4200-9268-5 | ||
020 | |a 9781420092684 |9 978-1-4200-9268-4 | ||
035 | |a (OCoLC)634021794 | ||
035 | |a (DE-599)GBV591131188 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-83 |a DE-634 |a DE-11 |a DE-29T | ||
084 | |a VN 7300 |0 (DE-625)147616:253 |2 rvk | ||
100 | 1 | |a Salmi, Tapio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chemical reaction engineering and reactor technology |c Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b CRC Press/Taylor & Francis |c 2011 | |
300 | |a XXXI, 615 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Chemical industries |v 125 | |
650 | 0 | |a Chemical reactions | |
650 | 0 | |a Chemical reactors | |
650 | 4 | |a Chemical reactions | |
650 | 4 | |a Chemical reactors | |
650 | 0 | 7 | |a Reaktionstechnik |0 (DE-588)4136173-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reaktionstechnik |0 (DE-588)4136173-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mikkola, Jyri-Pekka |e Verfasser |4 aut | |
700 | 1 | |a Wärn°a, Johan |e Verfasser |4 aut | |
830 | 0 | |a Chemical industries |v 125 |w (DE-604)BV001901142 |9 125 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-017380363 |
Datensatz im Suchindex
_version_ | 1804138915223830528 |
---|---|
adam_text | Contents
Preface
XIX
Notations
xxiii
Chapter
1
Introduction
1
1.1
PRELIMINARY STUDIES
4
1.1.1
Reaction Stoichiometry, Thermodynamics, and Synthesis Routes
4
1.2
LABORATORY EXPERIMENTS
4
1.3
ANALYSIS OF THE EXPERIMENTAL RESULTS
5
1.4
SIMULATION OF REACTOR MODELS
6
1.5
INSTALLATION OF A PILOT-PLANT UNIT
6
1.6
CONSTRUCTION OF THE FACILITY IN FULL SCALE
6
REFERENCES
7
Chapter
2
Stoichiometry and Kinetics
_____________________________________9
2.1
STOICHIOMETRIC MATRIX
10
2.2
REACTION KINETICS
12
2.2.1
Elementary Reactions
13
2.2.2
Kinetics of Nonelementary Reactions: Quasi-Steady-
State and Quasi-Equilibrium Approximations
16
2.2.2.1
Ionic and Radical Intermediates
18
xii ■ Contents
2.2.2.2
Catalytic Processes: Eley-Rideal Mechanism
20
2.2.2.3
Catalytic Processes: Langmuir-Hinshelwood Mechanism
24
REFERENCES
25
Chapter
3
Homogeneous Reactors
27
3.1
REACTORS FOR HOMOGENEOUS REACTIONS
27
3.2
HOMOGENEOUS TUBE REACTOR WITH A PLUG FLOW
34
3.2.1
Mass Balance
35
3.2.2
Energy Balance
37
3.3
HOMOGENEOUS TANK REACTOR WITH PERFECT MIXING
40
3.3.1
Mass Balance
40
3.3.2
Energy Balance
41
3.4
HOMOGENEOUS BR
44
3.4.1
Mass Balance
44
3.4.2
Energy Balance
45
3.5
MOLAR AMOUNT, MOLE FRACTION, REACTION EXTENT,
CONVERSION, AND CONCENTRATION
48
3.5.1
Definitions
48
3.5.2
Relation between Molar Amount, Extent of Reaction, Conversion,
and Molar Fraction
51
3.5.2.1
A System with a Single Chemical Reaction
51
3.5.2.2
A System with Multiple Chemical Reactions
52
3.5.3
Relationship between Concentration, Extent of Reaction, Conversion,
and Volumetric Flow Rate in a Continuous Reactor
55
3.5.3.1
Gas-Phase Reactions
55
3.5.3.2
Liquid-Phase Reactions
57
3.5.4
Relationship between Concentration, Extent of Reaction, Conversion,
and Total Pressure in a BR
59
3.5.4.1
Gas-Phase Reactions
59
3.5.4.2
Liquid-Phase Reactions
60
3.6
STOICHIOMETRY IN MASS BALANCES
61
3.7
EQUILIBRIUM REACTOR: ADIABATIC TEMPERATURE CHANGE
66
3.7.1
Mass and Energy Balances
66
3.8
ANALYTICAL SOLUTIONS FOR MASS AND ENERGY BALANCES
68
3.8.1
Multiple Reactions
71
3.8.1.1
First-Order Parallel Reactions
71
3.8.1.2
Momentaneous and Integral Yield for Parallel Reactions
76
3.8.1.3
Reactor Selection and Operating Conditions for Parallel Reactions
78
3.8.1.4
First-Order Consecutive Reactions
80
3.8.1.5
Consecutive-Competitive Reactions
83
3.8.1.6
Product Distributions in PFRs and BRs
84
Contents ■ xiii
3.8.1.7
Product
Distribution in
a CSTR
87
3.8.1.8
Comparison of
Ideal
Reactors
88
3.9
NUMERICAL SOLUTION OF MASS BALANCES FOR VARIOUS
COUPLED REACTIONS
89
REFERENCES
92
Chapter
4 Nonideal
Reactors: Residence Time Distributions
93
4.1
RESIDENCE TIME DISTRIBUTION IN FLOW REACTORS
93
4.1.1
Residence Time as a Concept
93
4.1.2
Methods for Determining RTDs
96
4.1.2.1
Volume Element
96
4.1.2.2
Tracer Experiments
97
4.2
RESIDENCE TIME FUNCTIONS
97
4.2.1
Population Density Function E(t)
98
4.2.2
Distribution Functions F(t) and F*(t)
100
4.2.3
Intensity Function
λ
(f)
101
4.2.4
Mean Residence Time
101
4.2.5
С
Function
102
4.2.6
Dimensionless Time
102
4.2.7
Variance
103
4.2.8
Experimental Determination of Residence Time Functions
103
4.2.9
RTD
for a CSTR and PFR
106
4.2.10
RTD in
Tube Reactors with a Laminar Flow
108
4.3
SEGREGATION AND MAXIMUM MIXEDNESS
113
4.3.1
Segregation Model
113
4.3.2
Maximum Mixedness Model
114
4.4
TANKS-IN-SERIES MODEL
115
4.4.1
Residence Time Functions for the Tanks-in-Series Model
116
4.4.2
Tanks in Series as a Chemical Reactor
119
4.4.3
Maximum-Mixed Tanks-in-Series Model
120
4.4.4
Segregated Tanks in Series
120
4.4.5
Comparison of Tanks-in-Series Models
121
4.4.6
Existence of Micro- and Macrofluids
121
4.5
AXIAL DISPERSION MODEL
123
4.5.1
RTDs for the Axial Dispersion Model
123
4.5.2
Axial Dispersion Model as a Chemical Reactor
128
4.5.3
Estimation of the Axial Dispersion Coefficient
1 33
4.6
TUBE REACTOR WITH A LAMINAR FLOW
134
4.6.1
Laminar Reactor without Radial Diffusion
134
4.6.2
Laminar Reactor with a Radial Diffusion: Axial Dispersion Model
137
REFERENCES
139
xiv ■ Contents
Chapters Catalytic Two-Phase Reactors
141
5.1
REACTORS FOR HETEROGENEOUS CATALYTIC GAS- AND
LIQUID-PHASE REACTIONS
143
5.2
PACKED BED
1 56
5.2.1
Mass Balances for the One-Dimensional Model
160
5.2.2
Effectiveness Factor
1 62
5.2.2.1
Chemical Reaction and Diffusion inside a Catalyst Particle
162
5.2.2.2
Spherical Particle
168
5.2.2.3
Slab
172
5.2.2.4
Asymptotic Effectiveness Factors for Arbitrary Kinetics
174
5.2.2.5
Nonisothermal Conditions
180
5.2.3
Energy Balances for the One-Dimensional Model
1 84
5.2.4
Mass and Energy Balances for the Two-Dimensional Model
1 89
5.2.5
Pressure Drop in Packed Beds
198
5.3
FLUIDIZEDBED
199
5.3.1
Mass Balances According to Ideal Models
201
5.3.2
Kunii-Levenspiel Model for
Fluidized
Beds
202
5.3.2.1
Kunii-Levenspiel Parameters
206
5.4
PARAMETERS FOR PACKED BED AND FLUIDIZED BED REACTORS
210
REFERENCES
212
Chapter
6
Catalytic Three-Phase Reactors
215
6.1
REACTORS USED FOR CATALYTIC THREE-PHASE REACTIONS
21 5
6.2
MASS BALANCES FOR THREE-PHASE REACTORS
227
6.2.1
Mass Transfer and Chemical Reaction
227
6.2.2
Three-Phase Reactors with a Plug Flow
229
6.2.3
Three-Phase Reactor with Complete Backmixing
232
6.2.4
Semibatch
and BRs
233
6.2.5
Parameters in Mass Balance Equations
234
6.3
ENERGY BALANCES FOR THREE-PHASE REACTORS
235
6.3.1
Three-Phase PFR
235
6.3.2
Tank Reactor with Complete Backmixing
236
6.3.3
Batch Reactor
237
6.3.4
Analytical and Numerical Solutions of Balance Equations for
Three-Phase Reactors
238
6.3.4.1
Sulfur Dioxide Oxidation
238
6.3.4.2
Hydrogénation
of Aromatics
239
6.3.4.3
Carbonyl Group
Hydrogénation
242
REFERENCES
244
Contents ■ xv
Chapter
7 Gas-Liquid
Reactors
247
7.1
REACTORS FOR NONCATALYTIC AND HOMOGENEOUSLY
CATALYZED REACTIONS
247
7.2
MASS BALANCES FOR IDEAL GAS-LIQUID REACTORS
256
7.2.1
Plug Flow Column Reactor
259
7.2.2
Tank Reactor with Complete Backmixing
261
7.2.3
Batch Reactor
262
7.2.4
Fluxes in Gas and Liquid Films
262
7.2.4.1
Very Slow Reactions
266
7.2.4.2
Slow Reactions
267
7.2.4.3
Reactions with a Finite Velocity
268
7.2.5
Fluxes in Reactor Mass Balances
281
7.2.6
Design of Absorption Columns
284
7.2.7
Gas and Liquid Film Coefficients, Diffusion Coefficients, and
Gas-Liquid Equilibria
287
7.3
ENERGY BALANCES FOR GAS-LIQUID REACTORS
289
7.3.1
Plug Flow Column Reactor
289
7.3.2
Tank Reactor with Complete Backmixing
291
7.3.3
Batch Reactor
292
7.3.4
Coupling of Mass and Energy Balances
293
7.3.5
Numerical Solution of Gas-Liquid Reactor Balances
293
REFERENCES
295
Chapter
8
Reactors for Reactive Solids
297
8.1
REACTORS FOR PROCESSES WITH REACTIVE SOLIDS
297
8.2
MODELS FOR REACTIVE SOLID PARTICLES
300
8.2.1
Definitions
300
8.2.2
Product Layer Model
304
8.2.2.1
First-Order Reactions
309
8.2.2.2
General Reaction Kinetics: Diffusion Resistance as the
Rate-Determining Step
312
8.2.3
Shrinking Particle Model
312
8.2.3.1
First-Order Reactions
313
8.2.3.2
Arbitrary Reaction Kinetics: Diffusion Resistance in the Gas
Film as the Rate-Determining Step
316
8.3
MASS BALANCES FOR REACTORS CONTAINING A SOLID
REACTIVE PHASE
316
8.3.1
Batch Reactor
316
8.3.1.1
Particles with a Porous Product Layer
318
8.3.1.2
Shrinking Particles
319
8.3.2
Semibatch
Reactor
321
8.3.2.1
Particle with a Porous Product Layer
322
xvi ■ Contents
8.3.2.2
Shrinking
Partide
322
8.3.3
Packed Bed
322
REFERENCES
325
Chapter
9
Toward New Reactor and Reaction Engineering
327
9.1
HOW TO APPROACH THE MODELING OF NOVEL
REACTOR CONCEPTS?
327
9.2
REACTOR STRUCTURES AND OPERATION MODES
329
9.2.1
Reactors with Catalyst Packings
329
9.2.1.1
Mass Balances for the Gas and Liquid Bulk Phases
332
9.2.1.2
Interfacial
Transport
333
9.2.1.3
Mass Balances for the Catalyst Particles
333
9.2.1.4
Numerical Solution of the Column Reactor Model
334
9.2.1.5
Concluding Summary
336
9.2.2
Monolith Reactors
336
9.2.2.1
Flow Distribution from CFD Calculations
338
9.2.2.2
Simplified Model for Reactive Flow
340
9.2.2.3
Application: Catalytic Three-Phase
Hydrogénation ofCitral
in the Monolith Reactor
341
9.2.3
Fiber Reactor
342
9.2.4
Membrane Reactor
344
9.2.5
Microreactor
346
9.3
TRANSIENT OPERATION MODES AND DYNAMIC MODELING
349
9.3.1
Periodic Switching of Feed Composition
351
9.3.2
Reverse Flow Reactors
352
9.4
NOVEL FORMS OF ENERGY AND REACTION MEDIA
355
9.4.1
Ultrasound
356
9.4.2
Microwaves
359
9.4.3
Supercritical Fluids
362
9.4.3.1
Case:
Hydrogénation
of
Triglycérides
362
9.4.4
Ionic Liquids
364
9.4.4.1
Case: Heterogenized ILs as Catalysts
365
9.5
EXPLORING REACTION ENGINEERING FOR NEW APPLICATIONS
366
9.5.1
Case Study: Delignification of Wood
367
9.6
SUMMARY
370
REFERENCES
371
Chapter
10
Chemical Reaction Engineering: Historical Remarks
and Future Challenges
373
10.1
CHEMICAL REACTION ENGINEERING AS A PART OF
CHEMICAL ENGINEERING
373
10.2
EARLY ACHIEVEMENTS OF CHEMICAL ENGINEERING
374
Contents ■ xvii
10.3
THE ROOTS OF CHEMICAL REACTION ENGINEERING
375
10.4
UNDERSTANDING CONTINUOUS REACTORS
AND TRANSPORT PHENOMENA
376
10.5
POSTWARTIME: NEW THEORIES EMERGE
377
10.6
NUMERICAL MATHEMATICS AND COMPUTING DEVELOP
378
10.7
TEACHING THE NEXT GENERATION
379
10.8
EXPANSION OF CHEMICAL REACTION ENGINEERING:
TOWARD NEW PARADIGMS
380
FURTHER READING
382
Chapter
11
Exercises
383
Chapter
12
Solutions of Selected Exercises
445
Appendix
1
Solutions of Algebraic Equation Systems
535
Appendix
2
Solutions of ODEs
537
A2.1 SEMI-IMPLICIT RUNGE-KUTTA METHOD
537
A2.2 LINEAR
MULTISTEP
METHODS
539
REFERENCES
541
Appendix
3
Computer Code NLEOPE
_________________________________543
A3.1 SUBROUTINE FCN
544
A3.2 SUBROUTINE FCNJ
544
REFERENCES
547
Appendix
4
Gas-Phase Diffusion Coefficients
___________________________549
REFERENCE
552
Appendix
5
Fluid-Film Coefficients
_____________________________553
A5.1 GAS-SOLID COEFFICIENTS
553
A5.2 GAS-LIQUID AND LIQUID-SOLID COEFFICIENTS
554
REFERENCES
555
Appendix
6
Liquid-Phase Diffusion Coefficients
557
A6.1 NEUTRAL MOLECULES
557
A6.2 IONS
558
REFERENCES
562
xviii ■ Contents
Appendix
7
Correlations for Gas-Liquid Systems
563
A7.1 BUBBLE COLUMNS
563
A7.2 PACKED COLUMNS
565
A7.3 SYMBOLS
567
A7.4 INDEX
568
A7.5 DIMENSIONLESS NUMBERS
568
REFERENCES
568
Appendix
8
Gas Solubilities
___________________________________________569
REFERENCES
572
Appendix
9
Laboratory Reactors
573
A9.1 FLOW PATTERN IN LABORATORY REACTORS
573
A9.2 MASS TRANSFER RESISTANCE
574
A9.3 HOMOGENEOUS BR
575
A9.4 HOMOGENEOUS STIRRED TANK REACTOR
577
A9.5 FIXED BED IN THE INTEGRAL MODE
578
A9.6 DIFFERENTIAL REACTOR
579
A9.7 GRADIENTLESS REACTOR
581
A9.8 BRs FOR TWO-AND THREE-PHASE PROCESSES
582
A9.9 CLASSIFICATION OF LABORATORY REACTOR MODELS
584
REFERENCES
585
Appendix
10
Estimation of Kinetic Parameters from Experimental Data
587
A10.1 COLLECTION OF KINETIC DATA
587
A10.2 INTEGRAL METHOD
590
A10.3 DIFFERENTIAL METHOD
594
A10.4 RECOMMENDATIONS
596
A10.5 INTRODUCTION TO NONLINEAR REGRESSION
596
A10.6 GENERAL APPROACH TO NONLINEAR REGRESSION IN
CHEMICAL REACTION ENGINEERING
598
REFERENCES
604
Author Index
605
Subject Index
607
The role of the chemical reactor is crucial for the industrial conversion of
raw materials into products and numerous factors must be considered when
selecting an appropriate and efficient chemical reactor. Chemical Reaction
Engineering and Reactor Technology defines the qualitative aspects that
affect the selection of an industrial chemical reactor and couples various
reactor models to case-specific kinetic expressions for chemical processes.
Offering a systematic development of the chemical reaction engineering
concept, this volume explores:
•
Essential stoichiometric, kinetic, and thermodynamic terms needed
in the analysis of chemical reactors
•
Homogeneous and heterogeneous reactors
•
Residence time distributions and non-ideal flow conditions in
industrial reactors
•
Solutions of algebraic and ordinary differential equation systems
•
Gas- and liquid-phase diffusion coefficients and gas-film coefficients
•
Correlations for gas-liquid systems
•
Solubilities of gases in liquids
•
Guidelines for laboratory reactors and the estimation of kinetic
parameters
The authors pay special attention to the exact formulations and derivations
of mass energy balances and their numerical solutions. Richly illustrated
and containing exercises and solutions covering a number of processes, from
oil refining to the development of specialty and fine chemicals, the text
provides a clear understanding of chemical reactor analysis and design.
CRC Press
Taylor &. Francis Group
an
informa
business
ww w.
с
re
press,
co
m
6000
Broken Sound Parkway, NW
Suite
300,
Boca Raton, FL
33487
270
Madison Avenue
New York, NY
10016
2
Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK
|
any_adam_object | 1 |
author | Salmi, Tapio Mikkola, Jyri-Pekka Wärn°a, Johan |
author_facet | Salmi, Tapio Mikkola, Jyri-Pekka Wärn°a, Johan |
author_role | aut aut aut |
author_sort | Salmi, Tapio |
author_variant | t s ts j p m jpm j w jw |
building | Verbundindex |
bvnumber | BV035460513 |
classification_rvk | VN 7300 |
ctrlnum | (OCoLC)634021794 (DE-599)GBV591131188 |
discipline | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01934nam a2200445 cb4500</leader><controlfield tag="001">BV035460513</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090429s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009012816</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1420092685</subfield><subfield code="9">1-4200-9268-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781420092684</subfield><subfield code="9">978-1-4200-9268-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634021794</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV591131188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7300</subfield><subfield code="0">(DE-625)147616:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Salmi, Tapio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical reaction engineering and reactor technology</subfield><subfield code="c">Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">CRC Press/Taylor & Francis</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXI, 615 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Chemical industries</subfield><subfield code="v">125</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemical reactions</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemical reactors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reaktionstechnik</subfield><subfield code="0">(DE-588)4136173-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikkola, Jyri-Pekka</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wärn°a, Johan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Chemical industries</subfield><subfield code="v">125</subfield><subfield code="w">(DE-604)BV001901142</subfield><subfield code="9">125</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017380363</subfield></datafield></record></collection> |
id | DE-604.BV035460513 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:35:46Z |
institution | BVB |
isbn | 1420092685 9781420092684 |
language | English |
lccn | 2009012816 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017380363 |
oclc_num | 634021794 |
open_access_boolean | |
owner | DE-703 DE-83 DE-634 DE-11 DE-29T |
owner_facet | DE-703 DE-83 DE-634 DE-11 DE-29T |
physical | XXXI, 615 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | CRC Press/Taylor & Francis |
record_format | marc |
series | Chemical industries |
series2 | Chemical industries |
spelling | Salmi, Tapio Verfasser aut Chemical reaction engineering and reactor technology Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå Boca Raton, Fla. [u.a.] CRC Press/Taylor & Francis 2011 XXXI, 615 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chemical industries 125 Chemical reactions Chemical reactors Reaktionstechnik (DE-588)4136173-8 gnd rswk-swf Reaktionstechnik (DE-588)4136173-8 s DE-604 Mikkola, Jyri-Pekka Verfasser aut Wärn°a, Johan Verfasser aut Chemical industries 125 (DE-604)BV001901142 125 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Salmi, Tapio Mikkola, Jyri-Pekka Wärn°a, Johan Chemical reaction engineering and reactor technology Chemical industries Chemical reactions Chemical reactors Reaktionstechnik (DE-588)4136173-8 gnd |
subject_GND | (DE-588)4136173-8 |
title | Chemical reaction engineering and reactor technology |
title_auth | Chemical reaction engineering and reactor technology |
title_exact_search | Chemical reaction engineering and reactor technology |
title_full | Chemical reaction engineering and reactor technology Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå |
title_fullStr | Chemical reaction engineering and reactor technology Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå |
title_full_unstemmed | Chemical reaction engineering and reactor technology Tapio Salmi ; Jyri-Pekka Mikkola ; Johan Wärnå |
title_short | Chemical reaction engineering and reactor technology |
title_sort | chemical reaction engineering and reactor technology |
topic | Chemical reactions Chemical reactors Reaktionstechnik (DE-588)4136173-8 gnd |
topic_facet | Chemical reactions Chemical reactors Reaktionstechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017380363&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV001901142 |
work_keys_str_mv | AT salmitapio chemicalreactionengineeringandreactortechnology AT mikkolajyripekka chemicalreactionengineeringandreactortechnology AT warnajohan chemicalreactionengineeringandreactortechnology |