Wireless sensor networks:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester [u.a.]
Wiley
2010
|
Schriftenreihe: | Ian F. Akyildiz series in communications and networking
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 493 S. Ill., graph. Darst. |
ISBN: | 9780470036013 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022312881 | ||
003 | DE-604 | ||
005 | 20100826 | ||
007 | t | ||
008 | 070315s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780470036013 |9 978-0-470-03601-3 | ||
035 | |a (OCoLC)815193313 | ||
035 | |a (DE-599)BVBBV022312881 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-20 |a DE-1050 |a DE-83 |a DE-898 | ||
084 | |a ST 200 |0 (DE-625)143611: |2 rvk | ||
084 | |a ZQ 3120 |0 (DE-625)158040: |2 rvk | ||
100 | 1 | |a Akyildiz, Ian Fuat |d 1954- |e Verfasser |0 (DE-588)110145453 |4 aut | |
245 | 1 | 0 | |a Wireless sensor networks |c Ian F. Akyildiz ; Mehmet Can Vuran |
264 | 1 | |a Chichester [u.a.] |b Wiley |c 2010 | |
300 | |a XXI, 493 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Ian F. Akyildiz series in communications and networking | |
650 | 0 | 7 | |a Funktechnik |0 (DE-588)4018908-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensorsystem |0 (DE-588)4307964-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Drahtloses Sensorsystem |0 (DE-588)4789222-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sensorsystem |0 (DE-588)4307964-7 |D s |
689 | 1 | 1 | |a Funktechnik |0 (DE-588)4018908-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vuran, Mehmet Can |e Verfasser |0 (DE-588)142007412 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015522382&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015522382 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136334770569216 |
---|---|
adam_text | Contents
About the Series Editor
xvii
Preface
xix
1
Introduction
1
1.1
Sensor Mote Platforms
2
1.1.1
Low-End Platforms
2
1.1.2
High-End Platforms
4
1.1.3
Standardization Efforts
5
1.1.4
Software
9
1.2
WSN Architecture and Protocol Stack
10
1.2.1
Physical Layer
12
12
13
13
14
15
17
17
17
18
19
21
21
23
23
24
25
26
26
28
29
29
30
31
31
32
33
33
1.2.2
Data Link Layer
1.2.3
Network Layer
1.2.4
Transport Layer
1.2.5
Application Layer
References
WSN
Applications
2.1
Military Applications
2.1.1
Smart Dust
2.1.2
Sniper Detection System
2.1.3
VigilNet
2 2
Environmental Applications
2.2.1
Great Duck Island
2.2.2
CORIE
2.2.3
ZebraNet
2.2.4
Volcano Monitoring
2.2.5
Early Flood Detection
2.3
Health
Applications
2.3.1
Artificial Retina
2.3.2
Patient Monitoring
2.3.3
Emergency Response
2.4
Home
Applications
2.4.1
Water Monitoring
2.5
industrial Applications
2.5.1
Preventive Maintenance
2.5.2
Structural Health Monitoring
2.5.3
Other Commercial Applications
References
i Contents
Factors
Influencing WSN Design
37
3.1
Hardware Constraints
37
3.2
Fault Tolerance
39
3.3
Scalability
40
3.4
Production Costs
40
3.5
WSN Topology
40
3.5.1
Pre-deployment and Deployment Phase
41
3.5.2
Post-deployment Phase
41
3.5.3
Re-deployment Phase of Additional Nodes
41
3.6
Transmission Media
41
3.7
Power Consumption
43
3.7.1
Sensing
43
3.7.2
Data Processing
44
3.7.3
Communication
46
References
49
Physical Layer
53
4.1
Physical Layer Technologies
53
4.1.1
RF
54
4.1.2
Other Techniques
55
4.2
Overview of RF Wireless Communication
57
4.3
Channel Coding (Error Control Coding)
59
4.3.1
Block Codes
59
4.3.2
Joint Source-Channel Coding
60
4.4
Modulation
62
4.4.1
FSK
64
4.4.2
QPSK
64
4.4.3
Binary vs. M-ary Modulation
64
4.5
Wireless Channel Effects
66
4.5.1
Attenuation
67
4.5.2
Multi-path Effects
68
4.5.3
Channel Error Rate
68
4.5.4
Unit Disc Graph vs. Statistical Channel Models
70
4.6
PHY Layer Standards
72
4.6.1
IEEE
802.15.4 72
4.6.2
Existing Transceivers
74
References
75
Medium Access Control
77
5.1
Challenges for MAC
77
5.1.1
Energy Consumption
78
5.1.2
Architecture
79
5.1.3
Event-Based Networking
79
5.1.4
Correlation
79
5.2
CSMA Mechanism
80
5.3
Contention-Based Medium Access
83
5.3.1
S-MAC
84
5.3.2
B-MAC
89
5.3.3
CC-MAC
92
Contents
5.3.4
Other Contention-Based MAC Protocols
98
5.3.5
Summary
103
5.4
Reservation-Based Medium Access
103
5.4.1
TRAMA
103
5.4.2
Other Reservation-Based MAC Protocols
106
5.4.3
Summary
110
5.5
Hybrid Medium Access
110
5.5.1
Zebra-MAC 111
References
115
Error Control
117
6.1
Classification of Error Control Schemes
117
6.1.1
Power Control
117
6.1.2
Automatic Repeat Request (ARQ)
118
6.1.3
Forward Error Correction (FEC)
119
6.1.4
Hybrid ARQ
119
6.2
Error Control in WSNs
120
6.3
Cross-layer Analysis Model
123
6.3.1
Network Model
124
6.3.2
Expected Hop Distance
125
6.3.3
Energy Consumption Analysis
127
6.3.4
Latency Analysis
129
6.3.5
Decoding Latency and Energy
130
6.3.6
BER
and PER
130
6.4
Comparison of Error Control Schemes
131
6.4.1
Hop Length Extension
131
6.4.2
Transmit Power Control
134
6.4.3
Hybrid Error Control
134
6.4.4
Overview of Results
136
References
137
139
139
139
140
140
140
141
141
141
143
143
144
146
148
148
148
150
151
152
Network Layer
7.1
Challenges for Routing
7.1.1
Energy Consumption
7.1.2
Scalability
7.1.3
Addressing
7.1.4
Robustness
7.1.5
Topology
7.1.6
Application
7.2
Data-centric and Flat-Architecture Protocols
7.2.1
Flooding
7.2.2
Gossiping
7.2.3
Sensor Protocols for Information via Negotiation (SPIN)
7.2.4
Directed Diffusion
7.2.5
Qualitative Evaluation
7.3
Hierarchical Protocols
7.3.1
LEACH
7.3.2
PEGASIS
7.3.3
TEEN and APTEEN
7.3.4
Qualitative Evaluation
χ
Contents
7.4
Geographical
Routing
Protocols
152
7.4.1
MECNandSMECN
153
7.4.2
Geographical Forwarding Schemes for Lossy Links
155
7.4.3
PRADA
157
7.4.4
Qualitative Evaluation
159
7.5
QoS-Based Protocols
159
7.5.1
SAR
160
7.5.2
Minimum Cost Path Forwarding
160
7.5.3
SPEED
162
7.5.4
Qualitative Evaluation
163
References
163
8
Transport Layer
167
8.1
Challenges for Transport Layer
167
8.1.1
End-to-End Measures
168
8.1.2
Application-Dependent Operation
168
8.1.3
Energy Consumption
168
8.1.4
Biased Implementation
169
8.1.5
Constrained Routing/Addressing
169
8.2
Reliable Multi-Segment Transport (RMST) Protocol
169
8.2.1
Qualitative Evaluation
170
8.3
Pump Slowly, Fetch Quickly (PSFQ) Protocol
171
8.3.1
Qualitative Evaluation
175
8.4
Congestion Detection and Avoidance (CODA) Protocol
175
8.4.1
Qualitative Evaluation
177
8.5
Event-to-Sink Reliable Transport (ESRT) Protocol
177
8.5.1
Qualitative Evaluation
180
8.6
GARUDA
180
8.6.1
Qualitative Evaluation
185
8.7
Real-Time and Reliable Transport (RT)2 Protocol
185
8.7.1
Qualitative Evaluation
189
References
189
9
Application Layer
191
9.1
Source Coding (Data Compression)
191
9.1.1
Sensor LZW
192
9.1.2
Distributed Source Coding
194
9.2
Query Processing
195
9.2.1
Query Representation
196
9.2.2
Data Aggregation
200
9.2.3
COUGAR
202
9.2.4
Fjords Architecture
205
9.2.5
Tiny Aggregation (TAG) Service
207
9.2.6
TinyDB
210
9.3
Network Management
212
9.3.1
Management Architecture for Wireless Sensor Networks (MANNA)
215
9.3.2
Sensor Network Management System (SNMS)
216
References
218
10
Cross-layer Solutions
221
10.1
Interlayer Effects
222
Contents
10.2
Cross-layer
Interactions
224
10.2.
1
MAC and Network
Layers
224
10.2.2
MAC and Application
Layers
226
10.2.3
Network
and PHY Layers
227
10.2.4
Transport and PHY Layers
228
10.3
Cross-layer Module
229
10.3.1
Initiative Determination
230
10.3.2
Transmission Initiation
231
10.3.3
Receiver Contention
232
10.3.4
Angle-Based Routing
234
10.3.5
Local Cross-layer Congestion Control
236
10.3.6
Recap: XLP Cross-layer Interactions and Performance
239
References
240
11
Time Synchronization
243
11.1
Challenges for Time Synchronization
243
11
11.
11.
.1
Low-Cost Clocks
244
.2
Wireless Communication
244
.3
Resource Constraints
245
11.1.4
High Density
245
11.1.5
Node Failures
245
11.2
Network Time Protocol
245
11.3
Definitions
246
11.4
Timing-Sync Protocol for Sensor Networks (TPSN)
248
11.4.1
Qualitative Evaluation
250
11.5
Reference-Broadcast Synchronization (RBS)
251
11.5.1
Qualitative Evaluation
251
11.6
Adaptive Clock Synchronization (ACS)
253
11.6.1
Qualitative Evaluation
254
11.7
Time Diffusion Synchronization Protocol (TDP)
254
11.7.1
Qualitative Evaluation
257
11.8
Rate-Based Diffusion Protocol (RDP)
257
11.8.1
Qualitative Evaluation
258
11.9
Tiny-and Mini-Sync Protocols
258
11.9.1
Qualitative Evaluation
260
11.10
Other Protocols
260
11.10.1
Lightweight Tree-Based Synchronization
(LTS)
260
11.10.2
TSync
261
11.10.3
Asymptotically Optimal Synchronization
261
11.10.4
Synchronization for Mobile Networks
261
References
262
12
Localization
265
12.1
Challenges in Localization
265
12.1.1
Physical Layer Measurements
265
12.1.2
Computational Constraints
267
12.1.3
Lack of GPS
267
12.1.4
Low-End Sensor Nodes
267
12.2
Ranging Techniques
268
12.2.1
Received Signal Strength
269
xii
Contents
12.2.2
Time of Arrival
269
12.2.3
Time Difference of Arrival
270
12.2.4
Angle of Arrival
271
12.3
Range-Based Localization Protocols
272
12.3.1
Ad Hoc Localization System
272
12.3.2
Localization with Noisy Range Measurements
275
12.3.3
Time-Based Positioning Scheme
276
12.3.4
Mobile-Assisted Localization
279
12.4
Range-Free Localization Protocols
280
12.4.1
Convex Position Estimation
280
12.4.2
Approximate Point-in-Triangulation (APIT) Protocol
283
References
284
287
288
289
290
291
292
294
296
297
299
300
303
305
308
309
311
313
317
14
Wireless Sensor and Actor Networks
319
14.1
Characteristics of WSANs
321
14.1.1
Network Architecture
321
14.1.2
Physical Architecture
323
14.2
Sensor-Actor Coordination
325
14.2.1
Requirements of Sensor-Actor Communication
325
14.2.2
Actor Selection
326
14.2.3
Optimal Solution
328
14.2.4
Distributed Event-Driven Clustering and Routing (DECR) Protocol
330
14.2.5
Performance
333
14.2.6
Challenges for Sensor-Actor Coordination
337
14.3
Actor-Actor Coordination
337
14.3.1
Task Assignment
339
14.3.2
Optimal Solution
340
14.3.3
Localized Auction Protocol
343
14.3.4
Performance Evaluation
343
14.3.5
Challenges for Actor-Actor Coordination
345
13
Topology Management
13
.1
Deployment
13
.2
Power Control
13.2.1
LMST
13.2.2
LMA and LMN
13.2.3
Interference-Aware Power Control
13.2.4
CONREAP
13.
,3
Activity Scheduling
13.3.1
GAF
13.3.2
ASCENT
13.3.3
SPAN
13.3.4
PEAS
13.3.5
STEM
13.
4
Clustering
13.4.1
Hierarchical Clustering
13.4.2
HEED
13.4.3
Coverage-Preserving Clustering
References
Contents
14.4 WSAN
Protocol
Stack 345
14.4.1
Management
Plane 346
14.4.2
Coordination Plane
346
14.4.3
Communication Plane
347
References
348
15
Wireless
Multimedia
Sensor
Networks
349
15.1
Design Challenges
350
15.1.1
Multimedia Source
Coding
350
15.1.2
High
В
andwidth Demand
351
15.1.3
Application-Specific QoS Requirements
351
15.1.4
Multimedia In-network Processing
352
15.1.5
Energy Consumption
352
15.1.6
Coverage
352
15.1.7
Resource Constraints
352
15.1.8
Variable Channel Capacity
352
15.1.9
Cross-layer Coupling of Functionalities
353
15.2
Network Architecture
353
15.2.1
Single Tier Architectures
353
15.2.2
Multi-tier Architecture
354
15.2.3
Coverage
355
15.3
Multimedia Sensor Hardware
357
15.3.1
Audio Sensors
357
15.3.2
Low-Resolution Video Sensors
358
15.3.3
Medium-Resolution Video Sensors
361
15.3.4
Examples of Deployed Multimedia Sensor Networks
362
15.4
Physical Layer
365
15.4.1
Time-Hopping Impulse Radio UWB (TH-IR-UWB)
366
15.4.2
Multicarrier UWB (MC-UWB)
367
15.4.3
Distance Measurements through UWB
367
15.5
MAC Layer
367
15.5.1
Frame Sharing (FRASH) MAC Protocol
369
15.5.2
Real-Time
Independent Channels (RICH) MAC Protocol
370
15.5.3
MIMO
Technology
370
15.5.4
Open Research Issues
371
15.6
Error Control
371
15.6.1
Joint Source Channel Coding and Power Control
372
15.6.2
Open Research Issues
373
15.7
Network Layer
374
15.7.1
Multi-path and Multi-speed Routing (MMSPEED) Protocol
375
15.7.2
Open Research Issues
378
15.8
Transport Layer
379
15.8.1
Multi-hop Buffering and Adaptation
380
15.8.2
Error Robust Image Transport
380
15.8.3
Open Research Issues
382
15.9
Application Layer
383
15.9.1
Traffic Management and Admission Control
383
15.9.2
Multimedia Encoding Techniques
384
15.9.3
Still Image Encoding
384
Contents
15.9.4
Distributed Source Coding
386
15.9.5
Open Research Issues
388
15.10
Cross-layer Design
388
15.10.1
Cross-layer Control Unit
389
15.11
Further Research Issues
392
15.11.1
Collaborative In-network Processing
392
15.11.2
Synchronization
394
References
394
16
Wireless Underwater Sensor Networks
399
16.1
Design Challenges
401
16.1.1
Terrestrial Sensor Networks vs. Underwater Sensor Networks
401
16.1.2
Real-Time
Networking vs. Delay-Tolerant Networking
402
16.2
Underwater Sensor Network Components
402
16.2.1
Underwater Sensors
402
16.2.2
AUVs
403
16.3
Communication Architecture
405
16.3.1
The2-DUWSNs
406
16.3.2
ТћеЗ
-DUWSNs
407
16.3.3
Sensor Networks with AUVs
408
16.4
Basics of Underwater Acoustic Propagation
409
16.4.1
Urick Propagation Model
411
16.4.2
Deep-Water Channel Model
412
16.4.3
Shallow-Water Channel Model
414
16.5
Physical Layer
414
16.6
MAC Layer
416
16.6.1
CSMA-Based MAC Protocols
416
16.6.2
CDMA-Based MAC Protocols
421
16.6.3
Hybrid MAC Protocols
425
16.7
Network Layer
426
16.7.1
Centralized Solutions
427
16.7.2
Distributed Solutions
429
16.7.3
Hybrid Solutions
435
16.8
Transport Layer
435
16.8.1
Open Research Issues
436
16.9
Application Layer
437
16.10
Cross-layer Design
437
References
440
17
Wireless Underground Sensor Networks
443
17.1
Applications
445
17.1.1
Environmental Monitoring
445
17.1.2
Infrastructure Monitoring
446
17.1.3
Location Determination of Objects
446
17.1.4
Border Patrol and Security Monitoring
447
17.2
Design Challenges
447
17.2.1
Energy Efficiency
447
17.2.2
Topology Design
448
17.2.3
Antenna Design
449
17.2.4
Environmental Extremes
449
Contents
17.3 Network
Architecture
450
17.3.1 WUSNsinSoil 450
17.3.2 WUSNs in
Mines and
Tunnels 452
17.4 Underground
Wireless
Channel
for EM Waves
453
17.4.1 Underground Channel
Properties
454
17A.2
Effect of Soil Properties on the Underground Channel
455
17.4.3
Soil Dielectric Constant
455
17.4.4
Underground Signal Propagation
457
17.4.5
Reflection from Ground Surface
458
17.4.6
Multi-path Fading and Bit Error Rate
460
17.5
Underground Wireless Channel for Magnetic Induction
463
17.5.1
MI Channel Model
463
17.5.2
MI Waveguide
464
17.5.3
Characteristics of MI Waves and MI Waveguide in Soil
466
17.6
Wireless Communication in Mines and Road/Subway Tunnels
466
17.6.1
Tunnel Environment
467
17.6.2
Room-and-Pillar Environment
472
17.6.3
Comparison with Experimental Measurements
474
17.7
Communication Architecture
474
17.7.1
Physical Layer
474
17.7.2
Data Link Layer
476
17.7.3
Network Layer
477
17.7.4
Transport Layer
478
17.7.5
Cross-layer Design
479
References
480
18
Grand Challenges
483
18.1
Integration of Sensor Networks and the Internet
483
18.2
Real-Time and Multimedia Communication
484
18.3
Protocol Stack
485
18.4
Synchronization and Localization
485
18.5
WSNs in Challenging Environments
486
18.6
Practical Considerations
488
18.7
Wireless Nano-sensor Networks
488
References
489
Index
491
|
adam_txt |
Contents
About the Series Editor
xvii
Preface
xix
1
Introduction
1
1.1
Sensor Mote Platforms
2
1.1.1
Low-End Platforms
2
1.1.2
High-End Platforms
4
1.1.3
Standardization Efforts
5
1.1.4
Software
9
1.2
WSN Architecture and Protocol Stack
10
1.2.1
Physical Layer
12
12
13
13
14
15
17
17
17
18
19
21
21
23
23
24
25
26
26
28
29
29
30
31
31
32
33
33
1.2.2
Data Link Layer
1.2.3
Network Layer
1.2.4
Transport Layer
1.2.5
Application Layer
References
WSN
Applications
2.1
Military Applications
2.1.1
Smart Dust
2.1.2
Sniper Detection System
2.1.3
VigilNet
2 2
Environmental Applications
2.2.1
Great Duck Island
2.2.2
CORIE
2.2.3
ZebraNet
2.2.4
Volcano Monitoring
2.2.5
Early Flood Detection
2.3
Health
Applications
2.3.1
Artificial Retina
2.3.2
Patient Monitoring
2.3.3
Emergency Response
2.4
Home
Applications
2.4.1
Water Monitoring
2.5
industrial Applications
2.5.1
Preventive Maintenance
2.5.2
Structural Health Monitoring
2.5.3
Other Commercial Applications
References
i Contents
Factors
Influencing WSN Design
37
3.1
Hardware Constraints
37
3.2
Fault Tolerance
39
3.3
Scalability
40
3.4
Production Costs
40
3.5
WSN Topology
40
3.5.1
Pre-deployment and Deployment Phase
41
3.5.2
Post-deployment Phase
41
3.5.3
Re-deployment Phase of Additional Nodes
41
3.6
Transmission Media
41
3.7
Power Consumption
43
3.7.1
Sensing
43
3.7.2
Data Processing
44
3.7.3
Communication
46
References
49
Physical Layer
53
4.1
Physical Layer Technologies
53
4.1.1
RF
54
4.1.2
Other Techniques
55
4.2
Overview of RF Wireless Communication
57
4.3
Channel Coding (Error Control Coding)
59
4.3.1
Block Codes
59
4.3.2
Joint Source-Channel Coding
60
4.4
Modulation
62
4.4.1
FSK
64
4.4.2
QPSK
64
4.4.3
Binary vs. M-ary Modulation
64
4.5
Wireless Channel Effects
66
4.5.1
Attenuation
67
4.5.2
Multi-path Effects
68
4.5.3
Channel Error Rate
68
4.5.4
Unit Disc Graph vs. Statistical Channel Models
70
4.6
PHY Layer Standards
72
4.6.1
IEEE
802.15.4 72
4.6.2
Existing Transceivers
74
References
75
Medium Access Control
77
5.1
Challenges for MAC
77
5.1.1
Energy Consumption
78
5.1.2
Architecture
79
5.1.3
Event-Based Networking
79
5.1.4
Correlation
79
5.2
CSMA Mechanism
80
5.3
Contention-Based Medium Access
83
5.3.1
S-MAC
84
5.3.2
B-MAC
89
5.3.3
CC-MAC
92
Contents
5.3.4
Other Contention-Based MAC Protocols
98
5.3.5
Summary
103
5.4
Reservation-Based Medium Access
103
5.4.1
TRAMA
103
5.4.2
Other Reservation-Based MAC Protocols
106
5.4.3
Summary
110
5.5
Hybrid Medium Access
110
5.5.1
Zebra-MAC 111
References
115
Error Control
117
6.1
Classification of Error Control Schemes
117
6.1.1
Power Control
117
6.1.2
Automatic Repeat Request (ARQ)
118
6.1.3
Forward Error Correction (FEC)
119
6.1.4
Hybrid ARQ
119
6.2
Error Control in WSNs
120
6.3
Cross-layer Analysis Model
123
6.3.1
Network Model
124
6.3.2
Expected Hop Distance
125
6.3.3
Energy Consumption Analysis
127
6.3.4
Latency Analysis
129
6.3.5
Decoding Latency and Energy
130
6.3.6
BER
and PER
130
6.4
Comparison of Error Control Schemes
131
6.4.1
Hop Length Extension
131
6.4.2
Transmit Power Control
134
6.4.3
Hybrid Error Control
134
6.4.4
Overview of Results
136
References
137
139
139
139
140
140
140
141
141
141
143
143
144
146
148
148
148
150
151
152
Network Layer
7.1
Challenges for Routing
7.1.1
Energy Consumption
7.1.2
Scalability
7.1.3
Addressing
7.1.4
Robustness
7.1.5
Topology
7.1.6
Application
7.2
Data-centric and Flat-Architecture Protocols
7.2.1
Flooding
7.2.2
Gossiping
7.2.3
Sensor Protocols for Information via Negotiation (SPIN)
7.2.4
Directed Diffusion
7.2.5
Qualitative Evaluation
7.3
Hierarchical Protocols
7.3.1
LEACH
7.3.2
PEGASIS
7.3.3
TEEN and APTEEN
7.3.4
Qualitative Evaluation
χ
Contents
7.4
Geographical
Routing
Protocols
152
7.4.1
MECNandSMECN
153
7.4.2
Geographical Forwarding Schemes for Lossy Links
155
7.4.3
PRADA
157
7.4.4
Qualitative Evaluation
159
7.5
QoS-Based Protocols
159
7.5.1
SAR
160
7.5.2
Minimum Cost Path Forwarding
160
7.5.3
SPEED
162
7.5.4
Qualitative Evaluation
163
References
163
8
Transport Layer
167
8.1
Challenges for Transport Layer
167
8.1.1
End-to-End Measures
168
8.1.2
Application-Dependent Operation
168
8.1.3
Energy Consumption
168
8.1.4
Biased Implementation
169
8.1.5
Constrained Routing/Addressing
169
8.2
Reliable Multi-Segment Transport (RMST) Protocol
169
8.2.1
Qualitative Evaluation
170
8.3
Pump Slowly, Fetch Quickly (PSFQ) Protocol
171
8.3.1
Qualitative Evaluation
175
8.4
Congestion Detection and Avoidance (CODA) Protocol
175
8.4.1
Qualitative Evaluation
177
8.5
Event-to-Sink Reliable Transport (ESRT) Protocol
177
8.5.1
Qualitative Evaluation
180
8.6
GARUDA
180
8.6.1
Qualitative Evaluation
185
8.7
Real-Time and Reliable Transport (RT)2 Protocol
185
8.7.1
Qualitative Evaluation
189
References
189
9
Application Layer
191
9.1
Source Coding (Data Compression)
191
9.1.1
Sensor LZW
192
9.1.2
Distributed Source Coding
194
9.2
Query Processing
195
9.2.1
Query Representation
196
9.2.2
Data Aggregation
200
9.2.3
COUGAR
202
9.2.4
Fjords Architecture
205
9.2.5
Tiny Aggregation (TAG) Service
207
9.2.6
TinyDB
210
9.3
Network Management
212
9.3.1
Management Architecture for Wireless Sensor Networks (MANNA)
215
9.3.2
Sensor Network Management System (SNMS)
216
References
218
10
Cross-layer Solutions
221
10.1
Interlayer Effects
222
Contents
10.2
Cross-layer
Interactions
224
10.2.
1
MAC and Network
Layers
224
10.2.2
MAC and Application
Layers
226
10.2.3
Network
and PHY Layers
227
10.2.4
Transport and PHY Layers
228
10.3
Cross-layer Module
229
10.3.1
Initiative Determination
230
10.3.2
Transmission Initiation
231
10.3.3
Receiver Contention
232
10.3.4
Angle-Based Routing
234
10.3.5
Local Cross-layer Congestion Control
236
10.3.6
Recap: XLP Cross-layer Interactions and Performance
239
References
240
11
Time Synchronization
243
11.1
Challenges for Time Synchronization
243
11
11.
11.
.1
Low-Cost Clocks
244
.2
Wireless Communication
244
.3
Resource Constraints
245
11.1.4
High Density
245
11.1.5
Node Failures
245
11.2
Network Time Protocol
245
11.3
Definitions
246
11.4
Timing-Sync Protocol for Sensor Networks (TPSN)
248
11.4.1
Qualitative Evaluation
250
11.5
Reference-Broadcast Synchronization (RBS)
251
11.5.1
Qualitative Evaluation
251
11.6
Adaptive Clock Synchronization (ACS)
253
11.6.1
Qualitative Evaluation
254
11.7
Time Diffusion Synchronization Protocol (TDP)
254
11.7.1
Qualitative Evaluation
257
11.8
Rate-Based Diffusion Protocol (RDP)
257
11.8.1
Qualitative Evaluation
258
11.9
Tiny-and Mini-Sync Protocols
258
11.9.1
Qualitative Evaluation
260
11.10
Other Protocols
260
11.10.1
Lightweight Tree-Based Synchronization
(LTS)
260
11.10.2
TSync
261
11.10.3
Asymptotically Optimal Synchronization
261
11.10.4
Synchronization for Mobile Networks
261
References
262
12
Localization
265
12.1
Challenges in Localization
265
12.1.1
Physical Layer Measurements
265
12.1.2
Computational Constraints
267
12.1.3
Lack of GPS
267
12.1.4
Low-End Sensor Nodes
267
12.2
Ranging Techniques
268
12.2.1
Received Signal Strength
269
xii
Contents
12.2.2
Time of Arrival
269
12.2.3
Time Difference of Arrival
270
12.2.4
Angle of Arrival
271
12.3
Range-Based Localization Protocols
272
12.3.1
Ad Hoc Localization System
272
12.3.2
Localization with Noisy Range Measurements
275
12.3.3
Time-Based Positioning Scheme
276
12.3.4
Mobile-Assisted Localization
279
12.4
Range-Free Localization Protocols
280
12.4.1
Convex Position Estimation
280
12.4.2
Approximate Point-in-Triangulation (APIT) Protocol
283
References
284
287
288
289
290
291
292
294
296
297
299
300
303
305
308
309
311
313
317
14
Wireless Sensor and Actor Networks
319
14.1
Characteristics of WSANs
321
14.1.1
Network Architecture
321
14.1.2
Physical Architecture
323
14.2
Sensor-Actor Coordination
325
14.2.1
Requirements of Sensor-Actor Communication
325
14.2.2
Actor Selection
326
14.2.3
Optimal Solution
328
14.2.4
Distributed Event-Driven Clustering and Routing (DECR) Protocol
330
14.2.5
Performance
333
14.2.6
Challenges for Sensor-Actor Coordination
337
14.3
Actor-Actor Coordination
337
14.3.1
Task Assignment
339
14.3.2
Optimal Solution
340
14.3.3
Localized Auction Protocol
343
14.3.4
Performance Evaluation
343
14.3.5
Challenges for Actor-Actor Coordination
345
13
Topology Management
13
.1
Deployment
13
.2
Power Control
13.2.1
LMST
13.2.2
LMA and LMN
13.2.3
Interference-Aware Power Control
13.2.4
CONREAP
13.
,3
Activity Scheduling
13.3.1
GAF
13.3.2
ASCENT
13.3.3
SPAN
13.3.4
PEAS
13.3.5
STEM
13.
4
Clustering
13.4.1
Hierarchical Clustering
13.4.2
HEED
13.4.3
Coverage-Preserving Clustering
References
Contents
14.4 WSAN
Protocol
Stack 345
14.4.1
Management
Plane 346
14.4.2
Coordination Plane
346
14.4.3
Communication Plane
347
References
348
15
Wireless
Multimedia
Sensor
Networks
349
15.1
Design Challenges
350
15.1.1
Multimedia Source
Coding
350
15.1.2
High
В
andwidth Demand
351
15.1.3
Application-Specific QoS Requirements
351
15.1.4
Multimedia In-network Processing
352
15.1.5
Energy Consumption
352
15.1.6
Coverage
352
15.1.7
Resource Constraints
352
15.1.8
Variable Channel Capacity
352
15.1.9
Cross-layer Coupling of Functionalities
353
15.2
Network Architecture
353
15.2.1
Single Tier Architectures
353
15.2.2
Multi-tier Architecture
354
15.2.3
Coverage
355
15.3
Multimedia Sensor Hardware
357
15.3.1
Audio Sensors
357
15.3.2
Low-Resolution Video Sensors
358
15.3.3
Medium-Resolution Video Sensors
361
15.3.4
Examples of Deployed Multimedia Sensor Networks
362
15.4
Physical Layer
365
15.4.1
Time-Hopping Impulse Radio UWB (TH-IR-UWB)
366
15.4.2
Multicarrier UWB (MC-UWB)
367
15.4.3
Distance Measurements through UWB
367
15.5
MAC Layer
367
15.5.1
Frame Sharing (FRASH) MAC Protocol
369
15.5.2
Real-Time
Independent Channels (RICH) MAC Protocol
370
15.5.3
MIMO
Technology
370
15.5.4
Open Research Issues
371
15.6
Error Control
371
15.6.1
Joint Source Channel Coding and Power Control
372
15.6.2
Open Research Issues
373
15.7
Network Layer
374
15.7.1
Multi-path and Multi-speed Routing (MMSPEED) Protocol
375
15.7.2
Open Research Issues
378
15.8
Transport Layer
379
15.8.1
Multi-hop Buffering and Adaptation
380
15.8.2
Error Robust Image Transport
380
15.8.3
Open Research Issues
382
15.9
Application Layer
383
15.9.1
Traffic Management and Admission Control
383
15.9.2
Multimedia Encoding Techniques
384
15.9.3
Still Image Encoding
384
Contents
15.9.4
Distributed Source Coding
386
15.9.5
Open Research Issues
388
15.10
Cross-layer Design
388
15.10.1
Cross-layer Control Unit
389
15.11
Further Research Issues
392
15.11.1
Collaborative In-network Processing
392
15.11.2
Synchronization
394
References
394
16
Wireless Underwater Sensor Networks
399
16.1
Design Challenges
401
16.1.1
Terrestrial Sensor Networks vs. Underwater Sensor Networks
401
16.1.2
Real-Time
Networking vs. Delay-Tolerant Networking
402
16.2
Underwater Sensor Network Components
402
16.2.1
Underwater Sensors
402
16.2.2
AUVs
403
16.3
Communication Architecture
405
16.3.1
The2-DUWSNs
406
16.3.2
ТћеЗ
-DUWSNs
407
16.3.3
Sensor Networks with AUVs
408
16.4
Basics of Underwater Acoustic Propagation
409
16.4.1
Urick Propagation Model
411
16.4.2
Deep-Water Channel Model
412
16.4.3
Shallow-Water Channel Model
414
16.5
Physical Layer
414
16.6
MAC Layer
416
16.6.1
CSMA-Based MAC Protocols
416
16.6.2
CDMA-Based MAC Protocols
421
16.6.3
Hybrid MAC Protocols
425
16.7
Network Layer
426
16.7.1
Centralized Solutions
427
16.7.2
Distributed Solutions
429
16.7.3
Hybrid Solutions
435
16.8
Transport Layer
435
16.8.1
Open Research Issues
436
16.9
Application Layer
437
16.10
Cross-layer Design
437
References
440
17
Wireless Underground Sensor Networks
443
17.1
Applications
445
17.1.1
Environmental Monitoring
445
17.1.2
Infrastructure Monitoring
446
17.1.3
Location Determination of Objects
446
17.1.4
Border Patrol and Security Monitoring
447
17.2
Design Challenges
447
17.2.1
Energy Efficiency
447
17.2.2
Topology Design
448
17.2.3
Antenna Design
449
17.2.4
Environmental Extremes
449
Contents
17.3 Network
Architecture
450
17.3.1 WUSNsinSoil 450
17.3.2 WUSNs in
Mines and
Tunnels 452
17.4 Underground
Wireless
Channel
for EM Waves
453
17.4.1 Underground Channel
Properties
454
17A.2
Effect of Soil Properties on the Underground Channel
455
17.4.3
Soil Dielectric Constant
455
17.4.4
Underground Signal Propagation
457
17.4.5
Reflection from Ground Surface
458
17.4.6
Multi-path Fading and Bit Error Rate
460
17.5
Underground Wireless Channel for Magnetic Induction
463
17.5.1
MI Channel Model
463
17.5.2
MI Waveguide
464
17.5.3
Characteristics of MI Waves and MI Waveguide in Soil
466
17.6
Wireless Communication in Mines and Road/Subway Tunnels
466
17.6.1
Tunnel Environment
467
17.6.2
Room-and-Pillar Environment
472
17.6.3
Comparison with Experimental Measurements
474
17.7
Communication Architecture
474
17.7.1
Physical Layer
474
17.7.2
Data Link Layer
476
17.7.3
Network Layer
477
17.7.4
Transport Layer
478
17.7.5
Cross-layer Design
479
References
480
18
Grand Challenges
483
18.1
Integration of Sensor Networks and the Internet
483
18.2
Real-Time and Multimedia Communication
484
18.3
Protocol Stack
485
18.4
Synchronization and Localization
485
18.5
WSNs in Challenging Environments
486
18.6
Practical Considerations
488
18.7
Wireless Nano-sensor Networks
488
References
489
Index
491 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Akyildiz, Ian Fuat 1954- Vuran, Mehmet Can |
author_GND | (DE-588)110145453 (DE-588)142007412 |
author_facet | Akyildiz, Ian Fuat 1954- Vuran, Mehmet Can |
author_role | aut aut |
author_sort | Akyildiz, Ian Fuat 1954- |
author_variant | i f a if ifa m c v mc mcv |
building | Verbundindex |
bvnumber | BV022312881 |
classification_rvk | ST 200 ZQ 3120 |
ctrlnum | (OCoLC)815193313 (DE-599)BVBBV022312881 |
discipline | Informatik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Informatik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01773nam a2200421 c 4500</leader><controlfield tag="001">BV022312881</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100826 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070315s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470036013</subfield><subfield code="9">978-0-470-03601-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815193313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022312881</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 200</subfield><subfield code="0">(DE-625)143611:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3120</subfield><subfield code="0">(DE-625)158040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Akyildiz, Ian Fuat</subfield><subfield code="d">1954-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110145453</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wireless sensor networks</subfield><subfield code="c">Ian F. Akyildiz ; Mehmet Can Vuran</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester [u.a.]</subfield><subfield code="b">Wiley</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 493 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ian F. Akyildiz series in communications and networking</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktechnik</subfield><subfield code="0">(DE-588)4018908-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Drahtloses Sensorsystem</subfield><subfield code="0">(DE-588)4789222-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sensorsystem</subfield><subfield code="0">(DE-588)4307964-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Funktechnik</subfield><subfield code="0">(DE-588)4018908-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vuran, Mehmet Can</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142007412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015522382&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015522382</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022312881 |
illustrated | Illustrated |
index_date | 2024-07-02T16:59:01Z |
indexdate | 2024-07-09T20:54:45Z |
institution | BVB |
isbn | 9780470036013 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015522382 |
oclc_num | 815193313 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-20 DE-1050 DE-83 DE-898 DE-BY-UBR |
owner_facet | DE-473 DE-BY-UBG DE-20 DE-1050 DE-83 DE-898 DE-BY-UBR |
physical | XXI, 493 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Wiley |
record_format | marc |
series2 | Ian F. Akyildiz series in communications and networking |
spelling | Akyildiz, Ian Fuat 1954- Verfasser (DE-588)110145453 aut Wireless sensor networks Ian F. Akyildiz ; Mehmet Can Vuran Chichester [u.a.] Wiley 2010 XXI, 493 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Ian F. Akyildiz series in communications and networking Funktechnik (DE-588)4018908-9 gnd rswk-swf Sensorsystem (DE-588)4307964-7 gnd rswk-swf Drahtloses Sensorsystem (DE-588)4789222-5 gnd rswk-swf Drahtloses Sensorsystem (DE-588)4789222-5 s DE-604 Sensorsystem (DE-588)4307964-7 s Funktechnik (DE-588)4018908-9 s 1\p DE-604 Vuran, Mehmet Can Verfasser (DE-588)142007412 aut Digitalisierung UB Bamberg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015522382&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Akyildiz, Ian Fuat 1954- Vuran, Mehmet Can Wireless sensor networks Funktechnik (DE-588)4018908-9 gnd Sensorsystem (DE-588)4307964-7 gnd Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
subject_GND | (DE-588)4018908-9 (DE-588)4307964-7 (DE-588)4789222-5 |
title | Wireless sensor networks |
title_auth | Wireless sensor networks |
title_exact_search | Wireless sensor networks |
title_exact_search_txtP | Wireless sensor networks |
title_full | Wireless sensor networks Ian F. Akyildiz ; Mehmet Can Vuran |
title_fullStr | Wireless sensor networks Ian F. Akyildiz ; Mehmet Can Vuran |
title_full_unstemmed | Wireless sensor networks Ian F. Akyildiz ; Mehmet Can Vuran |
title_short | Wireless sensor networks |
title_sort | wireless sensor networks |
topic | Funktechnik (DE-588)4018908-9 gnd Sensorsystem (DE-588)4307964-7 gnd Drahtloses Sensorsystem (DE-588)4789222-5 gnd |
topic_facet | Funktechnik Sensorsystem Drahtloses Sensorsystem |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015522382&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT akyildizianfuat wirelesssensornetworks AT vuranmehmetcan wirelesssensornetworks |