Machine Learning Methods for Engineering Application Development:
This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Piraí :
Bentham Science Publishers,
2022.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredeve. |
Beschreibung: | Description based upon print version of record. New Information Retrieval System for COVID-19: TREC COVID |
Beschreibung: | 1 online resource (240 p.) |
ISBN: | 9789815079180 9815079182 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1355222380 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 221224s2022 xx o ||| 0 eng d | ||
040 | |a EBLCP |b eng |c EBLCP |d YDX |d N$T |d OCLCF |d OCLCQ |d OCLCO |d TMA |d OCLCQ | ||
019 | |a 1352233936 | ||
020 | |a 9789815079180 | ||
020 | |a 9815079182 | ||
035 | |a (OCoLC)1355222380 |z (OCoLC)1352233936 | ||
050 | 4 | |a Q325.5 | |
082 | 7 | |a 006.31 |2 23/eng/20230508 | |
049 | |a MAIN | ||
100 | 1 | |a Lokulwar, Prasad. | |
245 | 1 | 0 | |a Machine Learning Methods for Engineering Application Development |h [electronic resource]. |
260 | |a Piraí : |b Bentham Science Publishers, |c 2022. | ||
300 | |a 1 online resource (240 p.) | ||
500 | |a Description based upon print version of record. | ||
505 | 0 | |a Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- [Key Features] -- Key Features -- List of Contributors -- Cutting Edge Techniques of Adaptive Machine Learning for Image Processing and Computer Vision -- P. Sasikumar1 and T. Saravanan1,* -- INTRODUCTION -- Techniques for Improvising Images -- Spatial-Domain Method -- Frequency-Domain Method -- TRANSFORMS: IMAGE IMPROVEMENT -- Wavelet-Transform Oriented Image Improvement -- Scaling and Translation -- IMAGE IMPROVEMENT WITH FILTERS -- DENOISING OF IMAGES -- Frontward Transform | |
505 | 8 | |a IMAGE IMPROVEMENT WITH PRINCIPAL COMPONENT PCA FOR 2D -- Implementing 2D-PCA -- SELECTION AND EXTRACTION OF FEATURES -- Criteria for Selecting Features -- Linear Criteria for Extracting Features -- Discontinuity Handling -- Integration Part: Limitations -- Alteration of Smoothness Terminology -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Algorithm For Intelligent Systems -- Pratik Dhoke1,*, Pranay Saraf1, Pawan Bhalandhare1, Yogadhar Pandey1, H. R. Deshmukh1 and Rahul Agrawal1 -- INTRODUCTION -- Reinforcement Learning -- Q-Learning | |
505 | 8 | |a Game Theory -- Machine Learning -- Decision Tree -- Logistic Regression -- K-Means Clustering -- Artificial Neural Network (ANN) -- Swarm Intelligence -- Swarm Robots -- Swarm Intelligence in Decision Making Algorithm -- Natural Language Processing -- CONCLUSION -- FUTURE SCOPE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Clinical Decision Support System for Early Prediction of Congenital Heart Disease using Machine learning Techniques -- Ritu Aggarwal1,* and Suneet Kumar2 -- INTRODUCTION -- RELATED WORK -- PROPOSED METHODOLOGY AND DATASET | |
505 | 8 | |a STEPS FOR TRAINING AND TESTING THE DATASET -- MACHINE LEARNING ALGORITHMS FOR PREDICTION -- SUPPORT VECTOR MACHINE -- RANDOM FOREST -- MULTILAYER PERCEPTRON -- INPUT LAYER -- HIDDEN LAYER -- OUTPUT LAYER -- K- NEAREST NEIGHBOR (K-NN) -- EXPERIMENTS AND RESULTS -- Comparison Results -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Review on Covid-19 Pandemic and Role of Multilingual Information Retrieval and Machine Translation for Managing its Effect -- Mangala Madankar1,* and Manoj Chandak2 -- INTRODUCTION -- RELATED WORK | |
505 | 8 | |a OUTBREAK STAGE OF COVID 19 -- Travel history from infected countries -- Local Transmission -- Geographical Cluster of Cases -- Community Transmission -- CURRENT SITUATION IN INDIA -- TREATMENT -- ILLNESS SEVERITY -- ANTIBODY AND PLASMA THERAPY -- VACCINE -- PREVENTIVE MEASURE -- Myths -- EMERGING TECHNOLOGY FOR MITIGATING THE EFFECT OF THE COVID-19 PANDEMIC -- Infodemic and Natural Language Processing -- Arogya Setu App -- Issues of Languages all Over the World and Machine Translation -- Difficulties in Accessing Data in the Native Language -- INFORMATION RETRIEVAL SYSTEM FOR COVID-19 | |
500 | |a New Information Retrieval System for COVID-19: TREC COVID | ||
520 | |a This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredeve. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a Machine learning |2 fast | |
700 | 1 | |a Verma, Basant. | |
700 | 1 | |a Thillaiarasu, N. | |
776 | 0 | 8 | |i Print version: |a Lokulwar, Prasad |t Machine Learning Methods for Engineering Application Development |d Piraí : Bentham Science Publishers,c2022 |z 9789815079197 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3466668 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL30290208 | ||
938 | |a YBP Library Services |b YANK |n 303288184 | ||
938 | |a EBSCOhost |b EBSC |n 3466668 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1355222380 |
---|---|
_version_ | 1816882567504199680 |
adam_text | |
any_adam_object | |
author | Lokulwar, Prasad |
author2 | Verma, Basant Thillaiarasu, N. |
author2_role | |
author2_variant | b v bv n t nt |
author_facet | Lokulwar, Prasad Verma, Basant Thillaiarasu, N. |
author_role | |
author_sort | Lokulwar, Prasad |
author_variant | p l pl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- [Key Features] -- Key Features -- List of Contributors -- Cutting Edge Techniques of Adaptive Machine Learning for Image Processing and Computer Vision -- P. Sasikumar1 and T. Saravanan1,* -- INTRODUCTION -- Techniques for Improvising Images -- Spatial-Domain Method -- Frequency-Domain Method -- TRANSFORMS: IMAGE IMPROVEMENT -- Wavelet-Transform Oriented Image Improvement -- Scaling and Translation -- IMAGE IMPROVEMENT WITH FILTERS -- DENOISING OF IMAGES -- Frontward Transform IMAGE IMPROVEMENT WITH PRINCIPAL COMPONENT PCA FOR 2D -- Implementing 2D-PCA -- SELECTION AND EXTRACTION OF FEATURES -- Criteria for Selecting Features -- Linear Criteria for Extracting Features -- Discontinuity Handling -- Integration Part: Limitations -- Alteration of Smoothness Terminology -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Algorithm For Intelligent Systems -- Pratik Dhoke1,*, Pranay Saraf1, Pawan Bhalandhare1, Yogadhar Pandey1, H. R. Deshmukh1 and Rahul Agrawal1 -- INTRODUCTION -- Reinforcement Learning -- Q-Learning Game Theory -- Machine Learning -- Decision Tree -- Logistic Regression -- K-Means Clustering -- Artificial Neural Network (ANN) -- Swarm Intelligence -- Swarm Robots -- Swarm Intelligence in Decision Making Algorithm -- Natural Language Processing -- CONCLUSION -- FUTURE SCOPE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Clinical Decision Support System for Early Prediction of Congenital Heart Disease using Machine learning Techniques -- Ritu Aggarwal1,* and Suneet Kumar2 -- INTRODUCTION -- RELATED WORK -- PROPOSED METHODOLOGY AND DATASET STEPS FOR TRAINING AND TESTING THE DATASET -- MACHINE LEARNING ALGORITHMS FOR PREDICTION -- SUPPORT VECTOR MACHINE -- RANDOM FOREST -- MULTILAYER PERCEPTRON -- INPUT LAYER -- HIDDEN LAYER -- OUTPUT LAYER -- K- NEAREST NEIGHBOR (K-NN) -- EXPERIMENTS AND RESULTS -- Comparison Results -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Review on Covid-19 Pandemic and Role of Multilingual Information Retrieval and Machine Translation for Managing its Effect -- Mangala Madankar1,* and Manoj Chandak2 -- INTRODUCTION -- RELATED WORK OUTBREAK STAGE OF COVID 19 -- Travel history from infected countries -- Local Transmission -- Geographical Cluster of Cases -- Community Transmission -- CURRENT SITUATION IN INDIA -- TREATMENT -- ILLNESS SEVERITY -- ANTIBODY AND PLASMA THERAPY -- VACCINE -- PREVENTIVE MEASURE -- Myths -- EMERGING TECHNOLOGY FOR MITIGATING THE EFFECT OF THE COVID-19 PANDEMIC -- Infodemic and Natural Language Processing -- Arogya Setu App -- Issues of Languages all Over the World and Machine Translation -- Difficulties in Accessing Data in the Native Language -- INFORMATION RETRIEVAL SYSTEM FOR COVID-19 |
ctrlnum | (OCoLC)1355222380 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05070cam a2200469Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-on1355222380</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">221224s2022 xx o ||| 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="c">EBLCP</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1352233936</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789815079180</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9815079182</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1355222380</subfield><subfield code="z">(OCoLC)1352233936</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23/eng/20230508</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lokulwar, Prasad.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine Learning Methods for Engineering Application Development</subfield><subfield code="h">[electronic resource].</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Piraí :</subfield><subfield code="b">Bentham Science Publishers,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (240 p.)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- [Key Features] -- Key Features -- List of Contributors -- Cutting Edge Techniques of Adaptive Machine Learning for Image Processing and Computer Vision -- P. Sasikumar1 and T. Saravanan1,* -- INTRODUCTION -- Techniques for Improvising Images -- Spatial-Domain Method -- Frequency-Domain Method -- TRANSFORMS: IMAGE IMPROVEMENT -- Wavelet-Transform Oriented Image Improvement -- Scaling and Translation -- IMAGE IMPROVEMENT WITH FILTERS -- DENOISING OF IMAGES -- Frontward Transform</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">IMAGE IMPROVEMENT WITH PRINCIPAL COMPONENT PCA FOR 2D -- Implementing 2D-PCA -- SELECTION AND EXTRACTION OF FEATURES -- Criteria for Selecting Features -- Linear Criteria for Extracting Features -- Discontinuity Handling -- Integration Part: Limitations -- Alteration of Smoothness Terminology -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Algorithm For Intelligent Systems -- Pratik Dhoke1,*, Pranay Saraf1, Pawan Bhalandhare1, Yogadhar Pandey1, H. R. Deshmukh1 and Rahul Agrawal1 -- INTRODUCTION -- Reinforcement Learning -- Q-Learning</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Game Theory -- Machine Learning -- Decision Tree -- Logistic Regression -- K-Means Clustering -- Artificial Neural Network (ANN) -- Swarm Intelligence -- Swarm Robots -- Swarm Intelligence in Decision Making Algorithm -- Natural Language Processing -- CONCLUSION -- FUTURE SCOPE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Clinical Decision Support System for Early Prediction of Congenital Heart Disease using Machine learning Techniques -- Ritu Aggarwal1,* and Suneet Kumar2 -- INTRODUCTION -- RELATED WORK -- PROPOSED METHODOLOGY AND DATASET</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">STEPS FOR TRAINING AND TESTING THE DATASET -- MACHINE LEARNING ALGORITHMS FOR PREDICTION -- SUPPORT VECTOR MACHINE -- RANDOM FOREST -- MULTILAYER PERCEPTRON -- INPUT LAYER -- HIDDEN LAYER -- OUTPUT LAYER -- K- NEAREST NEIGHBOR (K-NN) -- EXPERIMENTS AND RESULTS -- Comparison Results -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Review on Covid-19 Pandemic and Role of Multilingual Information Retrieval and Machine Translation for Managing its Effect -- Mangala Madankar1,* and Manoj Chandak2 -- INTRODUCTION -- RELATED WORK</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">OUTBREAK STAGE OF COVID 19 -- Travel history from infected countries -- Local Transmission -- Geographical Cluster of Cases -- Community Transmission -- CURRENT SITUATION IN INDIA -- TREATMENT -- ILLNESS SEVERITY -- ANTIBODY AND PLASMA THERAPY -- VACCINE -- PREVENTIVE MEASURE -- Myths -- EMERGING TECHNOLOGY FOR MITIGATING THE EFFECT OF THE COVID-19 PANDEMIC -- Infodemic and Natural Language Processing -- Arogya Setu App -- Issues of Languages all Over the World and Machine Translation -- Difficulties in Accessing Data in the Native Language -- INFORMATION RETRIEVAL SYSTEM FOR COVID-19</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">New Information Retrieval System for COVID-19: TREC COVID</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredeve.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, Basant.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thillaiarasu, N.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lokulwar, Prasad</subfield><subfield code="t">Machine Learning Methods for Engineering Application Development</subfield><subfield code="d">Piraí : Bentham Science Publishers,c2022</subfield><subfield code="z">9789815079197</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3466668</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL30290208</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">303288184</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">3466668</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-on1355222380 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:30:40Z |
institution | BVB |
isbn | 9789815079180 9815079182 |
language | English |
oclc_num | 1355222380 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (240 p.) |
psigel | ZDB-4-EBA |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Bentham Science Publishers, |
record_format | marc |
spelling | Lokulwar, Prasad. Machine Learning Methods for Engineering Application Development [electronic resource]. Piraí : Bentham Science Publishers, 2022. 1 online resource (240 p.) Description based upon print version of record. Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- [Key Features] -- Key Features -- List of Contributors -- Cutting Edge Techniques of Adaptive Machine Learning for Image Processing and Computer Vision -- P. Sasikumar1 and T. Saravanan1,* -- INTRODUCTION -- Techniques for Improvising Images -- Spatial-Domain Method -- Frequency-Domain Method -- TRANSFORMS: IMAGE IMPROVEMENT -- Wavelet-Transform Oriented Image Improvement -- Scaling and Translation -- IMAGE IMPROVEMENT WITH FILTERS -- DENOISING OF IMAGES -- Frontward Transform IMAGE IMPROVEMENT WITH PRINCIPAL COMPONENT PCA FOR 2D -- Implementing 2D-PCA -- SELECTION AND EXTRACTION OF FEATURES -- Criteria for Selecting Features -- Linear Criteria for Extracting Features -- Discontinuity Handling -- Integration Part: Limitations -- Alteration of Smoothness Terminology -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Algorithm For Intelligent Systems -- Pratik Dhoke1,*, Pranay Saraf1, Pawan Bhalandhare1, Yogadhar Pandey1, H. R. Deshmukh1 and Rahul Agrawal1 -- INTRODUCTION -- Reinforcement Learning -- Q-Learning Game Theory -- Machine Learning -- Decision Tree -- Logistic Regression -- K-Means Clustering -- Artificial Neural Network (ANN) -- Swarm Intelligence -- Swarm Robots -- Swarm Intelligence in Decision Making Algorithm -- Natural Language Processing -- CONCLUSION -- FUTURE SCOPE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Clinical Decision Support System for Early Prediction of Congenital Heart Disease using Machine learning Techniques -- Ritu Aggarwal1,* and Suneet Kumar2 -- INTRODUCTION -- RELATED WORK -- PROPOSED METHODOLOGY AND DATASET STEPS FOR TRAINING AND TESTING THE DATASET -- MACHINE LEARNING ALGORITHMS FOR PREDICTION -- SUPPORT VECTOR MACHINE -- RANDOM FOREST -- MULTILAYER PERCEPTRON -- INPUT LAYER -- HIDDEN LAYER -- OUTPUT LAYER -- K- NEAREST NEIGHBOR (K-NN) -- EXPERIMENTS AND RESULTS -- Comparison Results -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Review on Covid-19 Pandemic and Role of Multilingual Information Retrieval and Machine Translation for Managing its Effect -- Mangala Madankar1,* and Manoj Chandak2 -- INTRODUCTION -- RELATED WORK OUTBREAK STAGE OF COVID 19 -- Travel history from infected countries -- Local Transmission -- Geographical Cluster of Cases -- Community Transmission -- CURRENT SITUATION IN INDIA -- TREATMENT -- ILLNESS SEVERITY -- ANTIBODY AND PLASMA THERAPY -- VACCINE -- PREVENTIVE MEASURE -- Myths -- EMERGING TECHNOLOGY FOR MITIGATING THE EFFECT OF THE COVID-19 PANDEMIC -- Infodemic and Natural Language Processing -- Arogya Setu App -- Issues of Languages all Over the World and Machine Translation -- Difficulties in Accessing Data in the Native Language -- INFORMATION RETRIEVAL SYSTEM FOR COVID-19 New Information Retrieval System for COVID-19: TREC COVID This book is a quick review of machine learning methods for engineeringapplications. It provides an introduction to the principles of machine learningand common algorithms in the first section. Proceeding chapters summarize andanalyze the existing scholarly work and discuss some general issues in this field.Next, it offers some guidelines on applying machine learning methods to softwareengineering tasks. Finally, it gives an outlook into some of the futuredeve. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast Verma, Basant. Thillaiarasu, N. Print version: Lokulwar, Prasad Machine Learning Methods for Engineering Application Development Piraí : Bentham Science Publishers,c2022 9789815079197 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3466668 Volltext |
spellingShingle | Lokulwar, Prasad Machine Learning Methods for Engineering Application Development Cover -- Title -- Copyright -- End User License Agreement -- Contents -- Foreword -- Preface -- [Key Features] -- Key Features -- List of Contributors -- Cutting Edge Techniques of Adaptive Machine Learning for Image Processing and Computer Vision -- P. Sasikumar1 and T. Saravanan1,* -- INTRODUCTION -- Techniques for Improvising Images -- Spatial-Domain Method -- Frequency-Domain Method -- TRANSFORMS: IMAGE IMPROVEMENT -- Wavelet-Transform Oriented Image Improvement -- Scaling and Translation -- IMAGE IMPROVEMENT WITH FILTERS -- DENOISING OF IMAGES -- Frontward Transform IMAGE IMPROVEMENT WITH PRINCIPAL COMPONENT PCA FOR 2D -- Implementing 2D-PCA -- SELECTION AND EXTRACTION OF FEATURES -- Criteria for Selecting Features -- Linear Criteria for Extracting Features -- Discontinuity Handling -- Integration Part: Limitations -- Alteration of Smoothness Terminology -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENT -- REFERENCES -- Algorithm For Intelligent Systems -- Pratik Dhoke1,*, Pranay Saraf1, Pawan Bhalandhare1, Yogadhar Pandey1, H. R. Deshmukh1 and Rahul Agrawal1 -- INTRODUCTION -- Reinforcement Learning -- Q-Learning Game Theory -- Machine Learning -- Decision Tree -- Logistic Regression -- K-Means Clustering -- Artificial Neural Network (ANN) -- Swarm Intelligence -- Swarm Robots -- Swarm Intelligence in Decision Making Algorithm -- Natural Language Processing -- CONCLUSION -- FUTURE SCOPE -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- Clinical Decision Support System for Early Prediction of Congenital Heart Disease using Machine learning Techniques -- Ritu Aggarwal1,* and Suneet Kumar2 -- INTRODUCTION -- RELATED WORK -- PROPOSED METHODOLOGY AND DATASET STEPS FOR TRAINING AND TESTING THE DATASET -- MACHINE LEARNING ALGORITHMS FOR PREDICTION -- SUPPORT VECTOR MACHINE -- RANDOM FOREST -- MULTILAYER PERCEPTRON -- INPUT LAYER -- HIDDEN LAYER -- OUTPUT LAYER -- K- NEAREST NEIGHBOR (K-NN) -- EXPERIMENTS AND RESULTS -- Comparison Results -- CONCLUSION -- CONSENT FOR PUBLICATION -- CONFLICT OF INTEREST -- ACKNOWLEDGEMENTS -- REFERENCES -- A Review on Covid-19 Pandemic and Role of Multilingual Information Retrieval and Machine Translation for Managing its Effect -- Mangala Madankar1,* and Manoj Chandak2 -- INTRODUCTION -- RELATED WORK OUTBREAK STAGE OF COVID 19 -- Travel history from infected countries -- Local Transmission -- Geographical Cluster of Cases -- Community Transmission -- CURRENT SITUATION IN INDIA -- TREATMENT -- ILLNESS SEVERITY -- ANTIBODY AND PLASMA THERAPY -- VACCINE -- PREVENTIVE MEASURE -- Myths -- EMERGING TECHNOLOGY FOR MITIGATING THE EFFECT OF THE COVID-19 PANDEMIC -- Infodemic and Natural Language Processing -- Arogya Setu App -- Issues of Languages all Over the World and Machine Translation -- Difficulties in Accessing Data in the Native Language -- INFORMATION RETRIEVAL SYSTEM FOR COVID-19 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 |
title | Machine Learning Methods for Engineering Application Development |
title_auth | Machine Learning Methods for Engineering Application Development |
title_exact_search | Machine Learning Methods for Engineering Application Development |
title_full | Machine Learning Methods for Engineering Application Development [electronic resource]. |
title_fullStr | Machine Learning Methods for Engineering Application Development [electronic resource]. |
title_full_unstemmed | Machine Learning Methods for Engineering Application Development [electronic resource]. |
title_short | Machine Learning Methods for Engineering Application Development |
title_sort | machine learning methods for engineering application development |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Apprentissage automatique. Machine learning fast |
topic_facet | Machine learning. Apprentissage automatique. Machine learning |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3466668 |
work_keys_str_mv | AT lokulwarprasad machinelearningmethodsforengineeringapplicationdevelopment AT vermabasant machinelearningmethodsforengineeringapplicationdevelopment AT thillaiarasun machinelearningmethodsforengineeringapplicationdevelopment |