Bayesian Networks and Decision Graphs:
Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2001
|
Ausgabe: | 1st ed. 2001 |
Schriftenreihe: | Information Science and Statistics
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Zusammenfassung: | Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they can easily be compiled. Furthermore, handy algorithms are developed for analyses of the models and for providing responses to a wide range of requests such as belief updating, determining optimal strategies, conflict analyses of evidence, and most probable explanation. The book emphasizes both the human and the computer sides. Part I gives a thorough introduction to Bayesian networks as well as decision trees and infulence diagrams, and through examples and exercises, the reader is instructed in building graphical models from domain knowledge. This part is self-contained and it does not require other background than standard secondary school mathematics. Part II is devoted to the presentation of algorithms and complexity issues. This part is also self-contained, but it requires that the reader is familiar with working with texts in the mathematical language. The author also: - provides a well-founded practical introduction to Bayesian networks, decision trees and influence diagrams; - gives several examples and exercises exploiting the computer systems for Bayesian netowrks and influence diagrams; - gives practical advice on constructiong Bayesian networks and influence diagrams from domain knowledge; - embeds decision making into the framework of Bayesian networks; - presents in detail the currently most efficient algorithms for probability updating in Bayesian networks; - discusses a wide range of analyes tools and model requests together with algorithms for calculation of responses; - gives a detailed presentation of the currently most efficient algorithm for solving influence diagrams |
Beschreibung: | 1 Online-Ressource (XV, 268 p. 4 illus) |
ISBN: | 9781475735024 |
DOI: | 10.1007/978-1-4757-3502-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV047064848 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 201216s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781475735024 |9 978-1-4757-3502-4 | ||
024 | 7 | |a 10.1007/978-1-4757-3502-4 |2 doi | |
035 | |a (ZDB-2-SCS)978-1-4757-3502-4 | ||
035 | |a (OCoLC)1227481914 | ||
035 | |a (DE-599)BVBBV047064848 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 850 |0 (DE-625)143263: |2 rvk | ||
084 | |a ST 285 |0 (DE-625)143648: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Nielsen, Thomas Dyhre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian Networks and Decision Graphs |c by Thomas Dyhre Nielsen, FINN VERNER JENSEN. |
250 | |a 1st ed. 2001 | ||
264 | 1 | |a New York, NY |b Springer New York |c 2001 | |
300 | |a 1 Online-Ressource (XV, 268 p. 4 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Information Science and Statistics | |
520 | |a Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they can easily be compiled. Furthermore, handy algorithms are developed for analyses of the models and for providing responses to a wide range of requests such as belief updating, determining optimal strategies, conflict analyses of evidence, and most probable explanation. The book emphasizes both the human and the computer sides. Part I gives a thorough introduction to Bayesian networks as well as decision trees and infulence diagrams, and through examples and exercises, the reader is instructed in building graphical models from domain knowledge. This part is self-contained and it does not require other background than standard secondary school mathematics. Part II is devoted to the presentation of algorithms and complexity issues. This part is also self-contained, but it requires that the reader is familiar with working with texts in the mathematical language. The author also: - provides a well-founded practical introduction to Bayesian networks, decision trees and influence diagrams; - gives several examples and exercises exploiting the computer systems for Bayesian netowrks and influence diagrams; - gives practical advice on constructiong Bayesian networks and influence diagrams from domain knowledge; - embeds decision making into the framework of Bayesian networks; - presents in detail the currently most efficient algorithms for probability updating in Bayesian networks; - discusses a wide range of analyes tools and model requests together with algorithms for calculation of responses; - gives a detailed presentation of the currently most efficient algorithm for solving influence diagrams | ||
650 | 4 | |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Probability and Statistics in Computer Science | |
650 | 4 | |a Statistics | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Mathematical statistics | |
650 | 0 | 7 | |a Bayes-Netz |0 (DE-588)4567228-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entscheidungsgraph |0 (DE-588)4362839-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Entscheidungstheorie |0 (DE-588)4144220-9 |D s |
689 | 0 | 1 | |a Neuronales Netz |0 (DE-588)4226127-2 |D s |
689 | 0 | 2 | |a Entscheidungsgraph |0 (DE-588)4362839-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bayes-Netz |0 (DE-588)4567228-3 |D s |
689 | 1 | 1 | |a Entscheidungsgraph |0 (DE-588)4362839-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a VERNER JENSEN, FINN. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475735048 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9780387952598 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781475735031 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-3502-4 |x Verlag |z URL des Eerstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SCS | ||
940 | 1 | |q ZDB-2-SCS_2000/2004 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-032471960 | ||
966 | e | |u https://doi.org/10.1007/978-1-4757-3502-4 |l UBY01 |p ZDB-2-SCS |q ZDB-2-SCS_2000/2004 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804182063397470208 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nielsen, Thomas Dyhre VERNER JENSEN, FINN |
author_facet | Nielsen, Thomas Dyhre VERNER JENSEN, FINN |
author_role | aut aut |
author_sort | Nielsen, Thomas Dyhre |
author_variant | t d n td tdn j f v jf jfv |
building | Verbundindex |
bvnumber | BV047064848 |
classification_rvk | SK 830 SK 850 ST 285 ST 300 ST 301 |
collection | ZDB-2-SCS |
ctrlnum | (ZDB-2-SCS)978-1-4757-3502-4 (OCoLC)1227481914 (DE-599)BVBBV047064848 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4757-3502-4 |
edition | 1st ed. 2001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04574nmm a2200685zc 4500</leader><controlfield tag="001">BV047064848</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">201216s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475735024</subfield><subfield code="9">978-1-4757-3502-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-3502-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SCS)978-1-4757-3502-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1227481914</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV047064848</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 850</subfield><subfield code="0">(DE-625)143263:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 285</subfield><subfield code="0">(DE-625)143648:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nielsen, Thomas Dyhre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian Networks and Decision Graphs</subfield><subfield code="c">by Thomas Dyhre Nielsen, FINN VERNER JENSEN.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2001</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 268 p. 4 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Information Science and Statistics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they can easily be compiled. Furthermore, handy algorithms are developed for analyses of the models and for providing responses to a wide range of requests such as belief updating, determining optimal strategies, conflict analyses of evidence, and most probable explanation. The book emphasizes both the human and the computer sides. Part I gives a thorough introduction to Bayesian networks as well as decision trees and infulence diagrams, and through examples and exercises, the reader is instructed in building graphical models from domain knowledge. This part is self-contained and it does not require other background than standard secondary school mathematics. Part II is devoted to the presentation of algorithms and complexity issues. This part is also self-contained, but it requires that the reader is familiar with working with texts in the mathematical language. The author also: - provides a well-founded practical introduction to Bayesian networks, decision trees and influence diagrams; - gives several examples and exercises exploiting the computer systems for Bayesian netowrks and influence diagrams; - gives practical advice on constructiong Bayesian networks and influence diagrams from domain knowledge; - embeds decision making into the framework of Bayesian networks; - presents in detail the currently most efficient algorithms for probability updating in Bayesian networks; - discusses a wide range of analyes tools and model requests together with algorithms for calculation of responses; - gives a detailed presentation of the currently most efficient algorithm for solving influence diagrams</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability and Statistics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics </subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entscheidungsgraph</subfield><subfield code="0">(DE-588)4362839-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Entscheidungstheorie</subfield><subfield code="0">(DE-588)4144220-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Entscheidungsgraph</subfield><subfield code="0">(DE-588)4362839-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Entscheidungsgraph</subfield><subfield code="0">(DE-588)4362839-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">VERNER JENSEN, FINN.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475735048</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9780387952598</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781475735031</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-3502-4</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Eerstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SCS_2000/2004</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032471960</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4757-3502-4</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="q">ZDB-2-SCS_2000/2004</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV047064848 |
illustrated | Not Illustrated |
index_date | 2024-07-03T16:12:23Z |
indexdate | 2024-07-10T09:01:35Z |
institution | BVB |
isbn | 9781475735024 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032471960 |
oclc_num | 1227481914 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 1 Online-Ressource (XV, 268 p. 4 illus) |
psigel | ZDB-2-SCS ZDB-2-SCS_2000/2004 ZDB-2-SCS ZDB-2-SCS_2000/2004 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer New York |
record_format | marc |
series2 | Information Science and Statistics |
spelling | Nielsen, Thomas Dyhre Verfasser aut Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen, FINN VERNER JENSEN. 1st ed. 2001 New York, NY Springer New York 2001 1 Online-Ressource (XV, 268 p. 4 illus) txt rdacontent c rdamedia cr rdacarrier Information Science and Statistics Bayesian networks and decision graphs are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. Their strengths are two-sided. It is easy for humans to construct and to understand them, and when communicated to a computer, they can easily be compiled. Furthermore, handy algorithms are developed for analyses of the models and for providing responses to a wide range of requests such as belief updating, determining optimal strategies, conflict analyses of evidence, and most probable explanation. The book emphasizes both the human and the computer sides. Part I gives a thorough introduction to Bayesian networks as well as decision trees and infulence diagrams, and through examples and exercises, the reader is instructed in building graphical models from domain knowledge. This part is self-contained and it does not require other background than standard secondary school mathematics. Part II is devoted to the presentation of algorithms and complexity issues. This part is also self-contained, but it requires that the reader is familiar with working with texts in the mathematical language. The author also: - provides a well-founded practical introduction to Bayesian networks, decision trees and influence diagrams; - gives several examples and exercises exploiting the computer systems for Bayesian netowrks and influence diagrams; - gives practical advice on constructiong Bayesian networks and influence diagrams from domain knowledge; - embeds decision making into the framework of Bayesian networks; - presents in detail the currently most efficient algorithms for probability updating in Bayesian networks; - discusses a wide range of analyes tools and model requests together with algorithms for calculation of responses; - gives a detailed presentation of the currently most efficient algorithm for solving influence diagrams Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Artificial Intelligence Probability and Statistics in Computer Science Statistics Artificial intelligence Mathematical statistics Bayes-Netz (DE-588)4567228-3 gnd rswk-swf Entscheidungsgraph (DE-588)4362839-4 gnd rswk-swf Neuronales Netz (DE-588)4226127-2 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd rswk-swf Bayes-Entscheidungstheorie (DE-588)4144220-9 s Neuronales Netz (DE-588)4226127-2 s Entscheidungsgraph (DE-588)4362839-4 s DE-604 Bayes-Netz (DE-588)4567228-3 s VERNER JENSEN, FINN. aut Erscheint auch als Druck-Ausgabe 9781475735048 Erscheint auch als Druck-Ausgabe 9780387952598 Erscheint auch als Druck-Ausgabe 9781475735031 https://doi.org/10.1007/978-1-4757-3502-4 Verlag URL des Eerstveröffentlichers Volltext |
spellingShingle | Nielsen, Thomas Dyhre VERNER JENSEN, FINN Bayesian Networks and Decision Graphs Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Artificial Intelligence Probability and Statistics in Computer Science Statistics Artificial intelligence Mathematical statistics Bayes-Netz (DE-588)4567228-3 gnd Entscheidungsgraph (DE-588)4362839-4 gnd Neuronales Netz (DE-588)4226127-2 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
subject_GND | (DE-588)4567228-3 (DE-588)4362839-4 (DE-588)4226127-2 (DE-588)4144220-9 |
title | Bayesian Networks and Decision Graphs |
title_auth | Bayesian Networks and Decision Graphs |
title_exact_search | Bayesian Networks and Decision Graphs |
title_exact_search_txtP | Bayesian Networks and Decision Graphs |
title_full | Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen, FINN VERNER JENSEN. |
title_fullStr | Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen, FINN VERNER JENSEN. |
title_full_unstemmed | Bayesian Networks and Decision Graphs by Thomas Dyhre Nielsen, FINN VERNER JENSEN. |
title_short | Bayesian Networks and Decision Graphs |
title_sort | bayesian networks and decision graphs |
topic | Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Artificial Intelligence Probability and Statistics in Computer Science Statistics Artificial intelligence Mathematical statistics Bayes-Netz (DE-588)4567228-3 gnd Entscheidungsgraph (DE-588)4362839-4 gnd Neuronales Netz (DE-588)4226127-2 gnd Bayes-Entscheidungstheorie (DE-588)4144220-9 gnd |
topic_facet | Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences Artificial Intelligence Probability and Statistics in Computer Science Statistics Artificial intelligence Mathematical statistics Bayes-Netz Entscheidungsgraph Neuronales Netz Bayes-Entscheidungstheorie |
url | https://doi.org/10.1007/978-1-4757-3502-4 |
work_keys_str_mv | AT nielsenthomasdyhre bayesiannetworksanddecisiongraphs AT vernerjensenfinn bayesiannetworksanddecisiongraphs |