Mastering parallel programming with R :: master the robust features of R parallel programming to accelerate your data science computations /
Annotation
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing Limited,
2016.
|
Schriftenreihe: | Community experience distilled.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource. |
ISBN: | 9781784394622 1784394629 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn951337124 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 160607s2016 enk o 001 0 eng d | ||
040 | |a YDXCP |b eng |e rda |e pn |c YDXCP |d IDEBK |d N$T |d OCLCO |d N$T |d UMI |d OCLCF |d KSU |d DEBSZ |d DEBBG |d C6I |d VT2 |d OCLCQ |d UOK |d CEF |d WYU |d G3B |d UAB |d IGB |d STF |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d TMA |d OCLCQ | ||
019 | |a 952413857 | ||
020 | |a 9781784394622 |q (electronic bk.) | ||
020 | |a 1784394629 |q (electronic bk.) | ||
020 | |z 1784394009 | ||
020 | |z 9781784394004 | ||
035 | |a (OCoLC)951337124 |z (OCoLC)952413857 | ||
037 | |a CL0500000751 |b Safari Books Online | ||
050 | 4 | |a QA76.642 | |
072 | 7 | |a COM |x 051220 |2 bisacsh | |
082 | 7 | |a 005.2/75 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Mastering parallel programming with R : |b master the robust features of R parallel programming to accelerate your data science computations / |c Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing Limited, |c 2016. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Community experience distilled | |
500 | |a Includes index. | ||
588 | 0 | |a Online resource, title from PDF title page (Ebsco, viewed on July 28, 2016). | |
520 | 8 | |a Annotation |b Master the robust features of R parallel programming to accelerate your data science computationsAbout This Book*Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest*Become an expert in writing the most efficient and highest performance parallel algorithms in R*Get to grips with the concept of parallelism to accelerate your existing R programsWho This Book Is ForThis book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks.What You Will Learn*Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package*Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS)*Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code*Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages*Build and extend a parallel R package (SPRINT) with your own MPI-based routines*Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL*Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them*Build a task farm master-worker, spatial grid, and hybrid parallel R programsIn DetailR is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources.Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. | |
650 | 0 | |a Parallel programming (Computer science) |0 http://id.loc.gov/authorities/subjects/sh85097827 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 6 | |a Programmation parallèle (Informatique) | |
650 | 6 | |a R (Langage de programmation) | |
650 | 7 | |a COMPUTERS / Programming / Parallel |2 bisacsh | |
650 | 7 | |a Parallel programming (Computer science) |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
700 | 1 | |a Chapple, Simon R. |e author. | |
700 | 1 | |a Troup, Eilidh, |e author. | |
700 | 1 | |a Forster, Thorsten, |e author. | |
700 | 1 | |a Sloan, Terence, |e author. | |
758 | |i has work: |a Mastering parallel programming with R (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGP9mmxXKVFJvBHkdHJFKd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 1784394009 |z 9781784394004 |w (OCoLC)949750993 |
830 | 0 | |a Community experience distilled. |0 http://id.loc.gov/authorities/names/no2011030603 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1243721 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 13017083 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34551437 | ||
938 | |a EBSCOhost |b EBSC |n 1243721 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn951337124 |
---|---|
_version_ | 1816882350912438272 |
adam_text | |
any_adam_object | |
author | Chapple, Simon R. Troup, Eilidh Forster, Thorsten Sloan, Terence |
author_facet | Chapple, Simon R. Troup, Eilidh Forster, Thorsten Sloan, Terence |
author_role | aut aut aut aut |
author_sort | Chapple, Simon R. |
author_variant | s r c sr src e t et t f tf t s ts |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA76 |
callnumber-raw | QA76.642 |
callnumber-search | QA76.642 |
callnumber-sort | QA 276.642 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)951337124 |
dewey-full | 005.2/75 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.2/75 |
dewey-search | 005.2/75 |
dewey-sort | 15.2 275 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05767cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn951337124</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">160607s2016 enk o 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">OCLCF</subfield><subfield code="d">KSU</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">C6I</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UOK</subfield><subfield code="d">CEF</subfield><subfield code="d">WYU</subfield><subfield code="d">G3B</subfield><subfield code="d">UAB</subfield><subfield code="d">IGB</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">TMA</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">952413857</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781784394622</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1784394629</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1784394009</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781784394004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)951337124</subfield><subfield code="z">(OCoLC)952413857</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000751</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA76.642</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">051220</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">005.2/75</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Mastering parallel programming with R :</subfield><subfield code="b">master the robust features of R parallel programming to accelerate your data science computations /</subfield><subfield code="c">Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing Limited,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Community experience distilled</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource, title from PDF title page (Ebsco, viewed on July 28, 2016).</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation</subfield><subfield code="b">Master the robust features of R parallel programming to accelerate your data science computationsAbout This Book*Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest*Become an expert in writing the most efficient and highest performance parallel algorithms in R*Get to grips with the concept of parallelism to accelerate your existing R programsWho This Book Is ForThis book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks.What You Will Learn*Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package*Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS)*Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code*Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages*Build and extend a parallel R package (SPRINT) with your own MPI-based routines*Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL*Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them*Build a task farm master-worker, spatial grid, and hybrid parallel R programsIn DetailR is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources.Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Parallel programming (Computer science)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85097827</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Programmation parallèle (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming / Parallel</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Parallel programming (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chapple, Simon R.</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Troup, Eilidh,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Forster, Thorsten,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sloan, Terence,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Mastering parallel programming with R (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGP9mmxXKVFJvBHkdHJFKd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1784394009</subfield><subfield code="z">9781784394004</subfield><subfield code="w">(OCoLC)949750993</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Community experience distilled.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2011030603</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1243721</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13017083</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34551437</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1243721</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn951337124 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:13Z |
institution | BVB |
isbn | 9781784394622 1784394629 |
language | English |
oclc_num | 951337124 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource. |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | Packt Publishing Limited, |
record_format | marc |
series | Community experience distilled. |
series2 | Community experience distilled |
spelling | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. Birmingham, UK : Packt Publishing Limited, 2016. 1 online resource. text txt rdacontent computer c rdamedia online resource cr rdacarrier Community experience distilled Includes index. Online resource, title from PDF title page (Ebsco, viewed on July 28, 2016). Annotation Master the robust features of R parallel programming to accelerate your data science computationsAbout This Book*Create R programs that exploit the computational capability of your cloud platforms and computers to the fullest*Become an expert in writing the most efficient and highest performance parallel algorithms in R*Get to grips with the concept of parallelism to accelerate your existing R programsWho This Book Is ForThis book is for R programmers who want to step beyond its inherent single-threaded and restricted memory limitations and learn how to implement highly accelerated and scalable algorithms that are a necessity for the performant processing of Big Data. No previous knowledge of parallelism is required. This book also provides for the more advanced technical programmer seeking to go beyond high level parallel frameworks.What You Will Learn*Create and structure efficient load-balanced parallel computation in R, using R's built-in parallel package*Deploy and utilize cloud-based parallel infrastructure from R, including launching a distributed computation on Hadoop running on Amazon Web Services (AWS)*Get accustomed to parallel efficiency, and apply simple techniques to benchmark, measure speed and target improvement in your own code*Develop complex parallel processing algorithms with the standard Message Passing Interface (MPI) using RMPI, pbdMPI, and SPRINT packages*Build and extend a parallel R package (SPRINT) with your own MPI-based routines*Implement accelerated numerical functions in R utilizing the vector processing capability of your Graphics Processing Unit (GPU) with OpenCL*Understand parallel programming pitfalls, such as deadlock and numerical instability, and the approaches to handle and avoid them*Build a task farm master-worker, spatial grid, and hybrid parallel R programsIn DetailR is one of the most popular programming languages used in data science. Applying R to big data and complex analytic tasks requires the harnessing of scalable compute resources.Mastering Parallel Programming with R presents a comprehensive and practical treatise on how to build highly scalable and efficient algorithms in R. It will teach you a variety of parallelization techniques, from simple use of R's built-in parallel package versions of lapply(), to high-level AWS cloud-based Hadoop and Apache Spark frameworks. It will also teach you low level scalable parallel programming using RMPI and pbdMPI for message passing, applicable to clusters and supercomputers, and how to exploit thousand-fold simple processor GPUs through ROpenCL. By the end of the book, you will understand the factors that influence parallel efficiency, including assessing code performance and implementing load balancing; pitfalls to avoid, including deadlock and numerical instability issues; how to structure your code and data for the most appropriate type of parallelism for your problem domain; and how to extract the maximum performance from your R code running on a variety of computer systems. Parallel programming (Computer science) http://id.loc.gov/authorities/subjects/sh85097827 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Programmation parallèle (Informatique) R (Langage de programmation) COMPUTERS / Programming / Parallel bisacsh Parallel programming (Computer science) fast R (Computer program language) fast Chapple, Simon R. author. Troup, Eilidh, author. Forster, Thorsten, author. Sloan, Terence, author. has work: Mastering parallel programming with R (Text) https://id.oclc.org/worldcat/entity/E39PCGP9mmxXKVFJvBHkdHJFKd https://id.oclc.org/worldcat/ontology/hasWork Print version: 1784394009 9781784394004 (OCoLC)949750993 Community experience distilled. http://id.loc.gov/authorities/names/no2011030603 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1243721 Volltext |
spellingShingle | Chapple, Simon R. Troup, Eilidh Forster, Thorsten Sloan, Terence Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / Community experience distilled. Parallel programming (Computer science) http://id.loc.gov/authorities/subjects/sh85097827 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Programmation parallèle (Informatique) R (Langage de programmation) COMPUTERS / Programming / Parallel bisacsh Parallel programming (Computer science) fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85097827 http://id.loc.gov/authorities/subjects/sh2002004407 |
title | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / |
title_auth | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / |
title_exact_search | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / |
title_full | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. |
title_fullStr | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. |
title_full_unstemmed | Mastering parallel programming with R : master the robust features of R parallel programming to accelerate your data science computations / Simon R. Chapple, Eilidh Troup, Thorsten Forster, Terence Sloan. |
title_short | Mastering parallel programming with R : |
title_sort | mastering parallel programming with r master the robust features of r parallel programming to accelerate your data science computations |
title_sub | master the robust features of R parallel programming to accelerate your data science computations / |
topic | Parallel programming (Computer science) http://id.loc.gov/authorities/subjects/sh85097827 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Programmation parallèle (Informatique) R (Langage de programmation) COMPUTERS / Programming / Parallel bisacsh Parallel programming (Computer science) fast R (Computer program language) fast |
topic_facet | Parallel programming (Computer science) R (Computer program language) Programmation parallèle (Informatique) R (Langage de programmation) COMPUTERS / Programming / Parallel |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1243721 |
work_keys_str_mv | AT chapplesimonr masteringparallelprogrammingwithrmastertherobustfeaturesofrparallelprogrammingtoaccelerateyourdatasciencecomputations AT troupeilidh masteringparallelprogrammingwithrmastertherobustfeaturesofrparallelprogrammingtoaccelerateyourdatasciencecomputations AT forsterthorsten masteringparallelprogrammingwithrmastertherobustfeaturesofrparallelprogrammingtoaccelerateyourdatasciencecomputations AT sloanterence masteringparallelprogrammingwithrmastertherobustfeaturesofrparallelprogrammingtoaccelerateyourdatasciencecomputations |