Geometry and Representation Theory of Real and p-adic groups:
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1998
|
Schriftenreihe: | Progress in Mathematics
158 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The representation theory of Lie groups plays a central role in both classical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present volume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real reductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduction to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties |
Beschreibung: | 1 Online-Ressource (X, 326 p) |
ISBN: | 9781461241621 9781461286813 |
DOI: | 10.1007/978-1-4612-4162-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042420234 | ||
003 | DE-604 | ||
005 | 20170919 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461241621 |c Online |9 978-1-4612-4162-1 | ||
020 | |a 9781461286813 |c Print |9 978-1-4612-8681-3 | ||
024 | 7 | |a 10.1007/978-1-4612-4162-1 |2 doi | |
035 | |a (OCoLC)1165487525 | ||
035 | |a (DE-599)BVBBV042420234 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Geometry and Representation Theory of Real and p-adic groups |c edited by Juan Tirao, David A. Vogan, Joseph A. Wolf |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1998 | |
300 | |a 1 Online-Ressource (X, 326 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 158 | |
500 | |a The representation theory of Lie groups plays a central role in both classical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present volume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real reductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduction to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Group theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lie-Gruppe |0 (DE-588)4035695-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1995 |z C'ordoba Argentinien |2 gnd-content | |
689 | 0 | 0 | |a Lie-Gruppe |0 (DE-588)4035695-4 |D s |
689 | 0 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Tirao, Juan |d 1942- |0 (DE-588)172496403 |4 edt | |
700 | 1 | |a Vogan, David A. |d 1954- |0 (DE-588)172435285 |4 edt | |
700 | 1 | |a Wolf, Joseph Albert |d 1936-2023 |0 (DE-588)13068130X |4 edt | |
830 | 0 | |a Progress in Mathematics |v 158 |w (DE-604)BV000004120 |9 158 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-4162-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855651 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091911581696 |
---|---|
any_adam_object | |
author2 | Tirao, Juan 1942- Vogan, David A. 1954- Wolf, Joseph Albert 1936-2023 |
author2_role | edt edt edt |
author2_variant | j t jt d a v da dav j a w ja jaw |
author_GND | (DE-588)172496403 (DE-588)172435285 (DE-588)13068130X |
author_facet | Tirao, Juan 1942- Vogan, David A. 1954- Wolf, Joseph Albert 1936-2023 |
building | Verbundindex |
bvnumber | BV042420234 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165487525 (DE-599)BVBBV042420234 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-4162-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03853nmm a2200601zcb4500</leader><controlfield tag="001">BV042420234</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170919 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461241621</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-4162-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461286813</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8681-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-4162-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165487525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042420234</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry and Representation Theory of Real and p-adic groups</subfield><subfield code="c">edited by Juan Tirao, David A. Vogan, Joseph A. Wolf</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 326 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">158</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The representation theory of Lie groups plays a central role in both classical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present volume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real reductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduction to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1995</subfield><subfield code="z">C'ordoba Argentinien</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Gruppe</subfield><subfield code="0">(DE-588)4035695-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tirao, Juan</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)172496403</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="d">1954-</subfield><subfield code="0">(DE-588)172435285</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Joseph Albert</subfield><subfield code="d">1936-2023</subfield><subfield code="0">(DE-588)13068130X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">158</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">158</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-4162-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855651</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1995 C'ordoba Argentinien gnd-content |
genre_facet | Konferenzschrift 1995 C'ordoba Argentinien |
id | DE-604.BV042420234 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:06Z |
institution | BVB |
isbn | 9781461241621 9781461286813 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855651 |
oclc_num | 1165487525 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 326 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Geometry and Representation Theory of Real and p-adic groups edited by Juan Tirao, David A. Vogan, Joseph A. Wolf Boston, MA Birkhäuser Boston 1998 1 Online-Ressource (X, 326 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 158 The representation theory of Lie groups plays a central role in both classical and recent developments in many parts of mathematics and physics. In August, 1995, the Fifth Workshop on Representation Theory of Lie Groups and its Applications took place at the Universidad Nacional de Cordoba in Argentina. Organized by Joseph Wolf, Nolan Wallach, Roberto Miatello, Juan Tirao, and Jorge Vargas, the workshop offered expository courses on current research, and individual lectures on more specialized topics. The present volume reflects the dual character of the workshop. Many of the articles will be accessible to graduate students and others entering the field. Here is a rough outline of the mathematical content. (The editors beg the indulgence of the readers for any lapses in this preface in the high standards of historical and mathematical accuracy that were imposed on the authors of the articles. ) Connections between flag varieties and representation theory for real reductive groups have been studied for almost fifty years, from the work of Gelfand and Naimark on principal series representations to that of Beilinson and Bernstein on localization. The article of Wolf provides a detailed introduction to the analytic side of these developments. He describes the construction of standard tempered representations in terms of square-integrable partially harmonic forms (on certain real group orbits on a flag variety), and outlines the ingredients in the Plancherel formula. Finally, he describes recent work on the complex geometry of real group orbits on partial flag varieties Mathematics Algebra Geometry, algebraic Group theory Topological Groups Algebraic Geometry Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1995 C'ordoba Argentinien gnd-content Lie-Gruppe (DE-588)4035695-4 s Darstellungstheorie (DE-588)4148816-7 s 2\p DE-604 Tirao, Juan 1942- (DE-588)172496403 edt Vogan, David A. 1954- (DE-588)172435285 edt Wolf, Joseph Albert 1936-2023 (DE-588)13068130X edt Progress in Mathematics 158 (DE-604)BV000004120 158 https://doi.org/10.1007/978-1-4612-4162-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Geometry and Representation Theory of Real and p-adic groups Progress in Mathematics Mathematics Algebra Geometry, algebraic Group theory Topological Groups Algebraic Geometry Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
subject_GND | (DE-588)4035695-4 (DE-588)4148816-7 (DE-588)1071861417 |
title | Geometry and Representation Theory of Real and p-adic groups |
title_auth | Geometry and Representation Theory of Real and p-adic groups |
title_exact_search | Geometry and Representation Theory of Real and p-adic groups |
title_full | Geometry and Representation Theory of Real and p-adic groups edited by Juan Tirao, David A. Vogan, Joseph A. Wolf |
title_fullStr | Geometry and Representation Theory of Real and p-adic groups edited by Juan Tirao, David A. Vogan, Joseph A. Wolf |
title_full_unstemmed | Geometry and Representation Theory of Real and p-adic groups edited by Juan Tirao, David A. Vogan, Joseph A. Wolf |
title_short | Geometry and Representation Theory of Real and p-adic groups |
title_sort | geometry and representation theory of real and p adic groups |
topic | Mathematics Algebra Geometry, algebraic Group theory Topological Groups Algebraic Geometry Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Lie-Gruppe (DE-588)4035695-4 gnd Darstellungstheorie (DE-588)4148816-7 gnd |
topic_facet | Mathematics Algebra Geometry, algebraic Group theory Topological Groups Algebraic Geometry Topological Groups, Lie Groups Group Theory and Generalizations Mathematik Lie-Gruppe Darstellungstheorie Konferenzschrift 1995 C'ordoba Argentinien |
url | https://doi.org/10.1007/978-1-4612-4162-1 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT tiraojuan geometryandrepresentationtheoryofrealandpadicgroups AT vogandavida geometryandrepresentationtheoryofrealandpadicgroups AT wolfjosephalbert geometryandrepresentationtheoryofrealandpadicgroups |