Sloshing:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2009
|
Ausgabe: | 1. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXVII, 577 S. Ill., graph. Darst. |
ISBN: | 9780521881111 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035775032 | ||
003 | DE-604 | ||
005 | 20150424 | ||
007 | t | ||
008 | 091016s2009 xxuad|| |||| 00||| eng d | ||
010 | |a 2009006711 | ||
020 | |a 9780521881111 |9 978-0-521-88111-1 | ||
035 | |a (OCoLC)313077591 | ||
035 | |a (DE-599)GBV59353123X | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a TA357.5.S57 | |
082 | 0 | |a 620.1/064 | |
084 | |a ZO 6460 |0 (DE-625)157807: |2 rvk | ||
100 | 1 | |a Faltinsen, Odd M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sloshing |c Odd M. Faltinsen ; Alexander N. Timokha |
250 | |a 1. ed. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2009 | |
300 | |a XXVII, 577 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Sloshing (Hydrodynamics) | |
650 | 0 | 7 | |a Tank |0 (DE-588)4125647-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schwappende Flüssigkeit |0 (DE-588)7684756-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Frachtschiff |0 (DE-588)4018026-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Frachtschiff |0 (DE-588)4018026-8 |D s |
689 | 0 | 1 | |a Tank |0 (DE-588)4125647-5 |D s |
689 | 0 | 2 | |a Schwappende Flüssigkeit |0 (DE-588)7684756-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Timokha, Alexander N. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-018634641 |
Datensatz im Suchindex
_version_ | 1804140706848047104 |
---|---|
adam_text | Contents
Nomenclature page
xvii
Preface
and Acknowledgment
xxv
Acronyms and Abbreviations
xxvii
1
SLOSHING IN MARINE- AND LAND-BASED
APPLICATIONS
1
1.1
Introduction
1
1.2
Resonant free-surface motions
1
1.3
Ship tanks
5
1.3.1
Oil tankers
10
1.3.2
FPSO ships and shuttle tankers
12
1.3.3
Bulkcarriers
12
1.3.4
Liquefied gas carriers
14
1.3.5
LPG
carriers
15
1.3.6
LNG carriers
16
1.3.7
Chemical tankers
21
1.3.8
Fish transportation
21
1.3.9
Cruise vessels
21
1.3.10
Antirolling tanks
22
1.4
Tuned liquid dampers
22
1.5
Offshore platforms
24
1.6
Completely filled fabric structure
27
1.7
External sloshing for ships and marine structures
27
1.8
Sloshing in coastal engineering
30
1.9
Land transportation
31
1.10
Onshore tanks
31
1.11
Space applications
32
1.12
Summary of chapters
33
2
GOVERNING EQUATIONS OF LIQUID SLOSHING
35
2.1
Introduction
35
2.2
Navier-Stokes equations
35
2.2.1
Two-dimensional Navier-Stokes formulation for
incompressible liquid
35
2.2.1.1
Continuity equation
36
2.2.1.2
Viscous stresses and derivation of the Navier-Stokes
equations
36
vi
· Contents
2.2.2
Three-dimensional Navier-Stokes equations
37
2.2.2.1
Vorticity and potential flow
38
2.2.2.2
Compressibility
39
2.2.3
Turbulent flow
40
2.2.4
Global conservation laws
40
2.2.4.1
Conservation of fluid momentum
40
2.2.4.2
Conservation of kinetic and potential fluid energy
41
2.2.4.3
Examples: two special cases
42
2.3
Tank-fixed coordinate system
43
2.4
Governing equations in a noninertial, tank-fixed coordinate
system
45
2.4.1
Navier-Stokes equations
45
2.4.1.1
Illustrative example: application to the Earth as an
accelerated coordinate system
46
2.4.2
Potential flow formulation
47
2.4.2.1
Governing equations
47
2.4.2.2
Body boundary conditions
48
2.4.2.3
Free-surface conditions
48
2.4.2.4
Mass (volume) conservation condition
49
2.4.2.5
Free boundary problem of sloshing and
initial/periodicity conditions
49
2.5 Lagrange
variational formalism for the sloshing problem
51
2.5.1
Eulerian calculus of variations
51
2.5.2
Illustrative examples
53
2.5.2.1
Spring-mass systems
53
2.5.2.2
Euler-Bernoulli beam equation
54
2.5.2.3
Linear sloshing in an upright nonmoving tank
56
2.5.3 Lagrange
and Bateman-Luke variational formulations for
nonlinear sloshing
57
2.5.3.1
The
Lagrange
variational formulation
57
2.5.3.2
The Bateman-Luke principle
58
2.6
Summary
59
2.7
Exercises
59
2.7.1
Flow parameters
59
2.7.2
Surface tension
60
2.7.3
Kinematic boundary condition
60
2.7.4
Added mass force for
a nonlifting body
in infinite fluid
60
2.7.5
Euler-Lagrange equations for finite-dimensional
mechanical systems
61
WAVE-INDUCED SHIP MOTIONS
63
3.1
Introduction
63
3.2
Long-crested propagating waves
63
3.3
Statistical description of waves in a sea state
67
3.4
Long-term predictions of sea states
70
3.5
Linear wave-induced motions in regular waves
73
3.5.1
Definitions
73
3.5.2
Equations of motion in the frequency domain
76
Contents ·
vii
3.6
Coupled sloshing and ship motions
80
3.6.1
Quasi-steady free-surface effects of a tank
80
3.6.2
Antirolling tanks
82
3.6.3
Free-surface antirolling tanks
83
3.6.4
U-tube roll stabilizer
85
3.6.4.1
Nonlinear liquid motion
88
3.6.4.2
Linear forces and moments due to liquid motion in
the U-tube
90
3.6.4.3
Lloyd s U-tube model
90
3.6.4.4
Controlled U-tank stabilizer
94
3.6.5
Coupled sway motions and sloshing
97
3.6.6
Coupled three-dimensional ship motions and sloshing in
beam waves
99
3.7
Sloshing in external flow
103
3.7.1
Piston-mode resonance in a two-dimensional moonpool
103
3.7.2
Piston and sloshing modes in three-dimensional
moonpools
108
3.7.3
Resonant wave motion between two hulls
110
3.8
Time-domain response 111
3.9
Response in irregular waves
114
3.9.1
Linear short-term sea state response
114
3.9.2
Linear long-term predictions
115
3.10
Summary
115
3.11
Exercises
117
3.11.1
Wave energy
117
3.11.2
Surface tension
117
3.11.3
Added mass and damping
118
3.11.4
Heave damping at small frequencies in finite water depth
118
3.11.5
Coupled roll and sloshing in an antirolling tank of a
barge in beam sea
119
3.11.6
Operational analysis of patrol boat with U-tube tank
120
3.11.7
Moonpool and gap resonances
121
4
LINEAR NATURAL SLOSHING MODES
122
4.1
Introduction
122
4.2
Natural frequencies and modes
123
4.3
Exact natural frequencies and modes
125
4.3.1
Two-dimensional case
125
4.3.1.1
Rectangular planar tank
125
4.3.1.2
Wedge cross-section with
45e
and
60°
semi-apex
angles
128
4.3.1.3
Troesch s analytical solutions
130
4.3.2
Three-dimensional cases
130
4.3.2.1
Rectangular tank
130
4.3.2.2
Upright circular cylindrical tank
133
4.4
Seiching
135
4.4.1
Parabolic basin
136
4.4.2
Triangular basin
136
viii
· Contents
4.4.3
Harbors
137
4.4.4
Pumping-mode resonance of a harbor
137
4.4.5
Ocean basins
138
4.5
Domain decomposition
138
4.5.1
Two-dimensional sloshing with a shallow-water part
138
4.5.2
Example: swimming pools
140
4.6
Variational statement and comparison theorems
140
4.6.1
Variational formulations
142
4.6.1.1
Rayleigh s method
142
4.6.1.2
Rayleigh quotient for natural sloshing
144
4.6.1.3
Variational equation
147
4.6.2
Natural frequencies versus tank shape: comparison
theorems
150
4.6.3
Asymptotic formulas for the natural frequencies and the
variational statement
151
4.6.3.1
Small liquid-domain reductions of rectangular tanks
151
4.6.3.2
Asymptotic formula for a chamfered tank bottom:
examples
152
4.6.3.3
Discussion on the analytical continuation and the
applicability of formula
(4.90) 155
4.7
Asymptotic natural frequencies for tanks with small internal
structures
157
4.7.1
Main theoretical background
158
4.7.2
Baffles
161
4.7.2.1
Small-size (horizontal or vertical) thin baffle
161
4.7.2.2
Hydrodynamic interaction between baffles (plates)
and free-surface effects
164
4.7.3
Poles
168
4.7.3.1
Horizontal and vertical poles
168
4.7.3.2
Proximity of circular poles
170
4.8
Approximate solutions
171
4.8.1
Two-dimensional circular tanks
171
4.8.2
Axisymmetric tanks
172
4.8.2.1
Spherical tank
173
4.8.2.2
Ellipsoidal (oblate spheroidal) container
175
4.8.3
Horizontal cylindrical container
176
4.8.3.1
Shallow-liquid approximation for arbitrary
cross-section
176
4.8.3.2
Shallow-liquid approximation for circular
cross-section
177
4.9
Two-layer liquid
179
4.9.1
General statement
179
4.9.2
Two-phase shallow-liquid approximation
182
4.9.2.1
Example: oil-gas separator
183
4.10
Summary
185
4.11
Exercises
186
4.11.1
Irregular frequencies
186
Contents · ix
4.11.2
Shallow-liquid
approximation
for trapezoidal-base tank
186
4.11.3
Annular and sectored upright circular tank
187
4.11.4
Circular swimming pool
187
4.11.5
Effect of pipes on sloshing frequencies for a
gravity-based platform
189
4.11.6
Effect of horizontal isolated baffles in a rectangular tank
191
4.11.7
Isolated vertical baffles in a rectangular tank
192
5
LINEAR MODAL THEORY
193
5.1
Introduction
193
5.2
Illustrative example: surge excitations of a rectangular tank
193
5.3
Theory
196
5.3.1
Linear modal equations
196
5.3.1.1
Six generalized coordinates for solid-body, linear
dynamics
196
5.3.1.2
Generalized coordinates for liquid sloshing and
derivation of linear modal equations
197
5.3.1.3
Linear modal equations for prescribed tank motions
199
5.3.2
Resulting hydrodynamic force and moment in linear
approximation
200
5.3.2.1
Force
200
5.3.2.2
Moment
202
5.3.3
Steady-state and transient motions: initial and periodicity
conditions
204
5.4
Implementation of linear modal theory
208
5.4.1
Time- and frequency-domain solutions
208
5.4.1.1
Time-domain solution with prescribed tank motion
208
5.4.1.2
Time-domain solution of coupled sloshing and body
motion
208
5.4.1.3
Frequency-domain solution of coupled sloshing and
body motion
208
5.4.2
Forced sloshing in a two-dimensional rectangular tank
211
5.4.2.1
Hydrodynamic coefficients
211
5.4.2.2
Completely filled two-dimensional rectangular tank
213
5.4.2.3
Transient sloshing during collision of two ships
219
5.4.2.4
Effect of elastic tank wall deflections on sloshing
224
5.4.3
Forced sloshing in a three-dimensional rectangular-base
tank
226
5.4.3.1
Hydrodynamic coefficients
226
5.4.3.2
Added mass coefficients in ship applications
229
5.4.3.3
Tank added mass coefficients in a ship motion analysis
233
5.4.4
Hydrodynamic coefficients for an upright circular
cylindrical tank
235
5.4.5
Coupling between sloshing and wave-induced vibrations
of a monotower
237
5.4.5.1
Theory
237
χ
· Contents
5.4.5.2
Undamped eigenfrequencies of the coupled motions
240
5.4.5.3
Variational method
240
5.4.5.4
Wave excitation
242
5.4.5.5
Damping
244
5.4.6
Rollover of a tank vehicle
245
5.4.7
Spherical tanks
247
5.4.7.1
Hydroelastic vibrations of a spherical tank
247
5.4.7.2
Simplified two-mode modal system for sloshing in a
spherical tank
249
5.4.8
Transient analysis of tanks with asymptotic estimates of
natural frequencies
250
5.5
Summary
251
5.6
Exercises
251
5.6.1
Moments by direct pressure integration and the Lukovsky
formula
251
5.6.2
Transient sloshing with damping
251
5.6.3
Effect of small structural deflections of the tank bottom
on sloshing
252
5.6.4
Effect of elastic deformations of vertical circular tank
252
5.6.5
Spilling of coffee
253
5.6.6
Braking of a tank vehicle
253
5.6.7
Free decay of a ship cross-section in roll
253
6
VISCOUS WAVE LOADS AND DAMPING
254
6.1
Introduction
254
6.2
Boundary-layer flow
254
6.2.1
Oscillatory nonseparated laminar flow
255
6.2.2
Oscillatory nonseparated laminar flow past a circular
cylinder
257
6.2.3
Turbulent nonseparated boundary-layer flow
258
6.2.3.1
Turbulent energy dissipation
260
6.2.3.2
Oscillatory nonseparated flow past a circular
cylinder
261
6.3
Damping of sloshing in a rectangular tank
262
6.3.1
Damping due to boundary-layer flow (Keulegan s theory)
262
6.3.2
Incorporation of boundary-layer damping in a potential
flow model
264
6.3.3
Bulk damping
265
6.4
Morison s equation
266
6.4.1
Morison s equation in a tank-fixed coordinate system
267
6.4.2
Generalizations of Morison s equation
269
6.4.3
Mass and drag coefficients
{См
and Co)
270
6.5
Viscous damping due to baffles
274
6.5.1
Baffle mounted vertically on the tank bottom
275
6.5.2
Baffles mounted horizontally on a tank wall
278
6.6
Forced resonant sloshing in a two-dimensional rectangular
tank
280
Contents · xi
6.7
Tuned
liquid
damper
(TLD)
280
6.7.1
TLD
with
vertical
poles
282
6.7.2
TLD
with
vertical plate
283
6.7.3
TLD
with wire-mesh screen
283
6.7.4
Scaling of model
tests
of
a TLD
286
6.7.5
Forced longitudinal oscillations of a TLD
286
6.8
Effect of swash bulkheads and screens with high solidity
ratio
289
6.9
Vortex-induced vibration (VIV)
294
6.10
Summary
296
6.11
Exercises
297
6.11.1
Damping ratios in a rectangular tank
297
6.11.2
Morison s equation
297
6.11.3
Scaling of TLD with vertical poles
298
6.11.4
Effect of unsteady laminar boundary-layer flow on
potential flow
298
6.11.5
Reduction of natural sloshing frequency due to
wire-mesh screen
298
7 MULTIMODAL
METHOD
299
7.1
Introduction
299
7.2
Nonlinear modal equations for sloshing
300
7.2.1
Modal representation of the free surface and velocity
potential
300
7.2.2
Modal system based on the Bateman-Luke formulation
301
7.2.3
Advantages and limitations of the nonlinear modal
method
303
7.3
Modal technique for hydrodynamic forces and moments
304
7.3.1
Hydrodynamic force
305
7.3.1.1
General case
305
7.3.1.2
Completely filled closed tank
306
7.3.2
Moment
306
7.3.2.1
Hydrodynamic moment as a function of the angular
momentum
306
7.3.2.2
Potential flow
307
7.3.2.3
Completely filled closed tank
307
7.4
Limitations of the modal theory and Lukovsky s formulas due
to damping
307
7.5
Summary
308
7.6
Exercises
309
7.6.1
Modal equations for the beam problem
309
7.6.2
Linear modal equations for sloshing
309
8
NONLINEAR ASYMPTOTIC THEORIES AND
EXPERIMENTS FOR A TWO-DIMENSIONAL
RECTANGULAR TANK
310
8.1
Introduction
310
xii · Contents
8.2
Steady-state resonant solutions and their stability for a
Duffing-like mechanical system
315
8.2.1
Nonlinear spring-mass system, resonant solution, and its
stability
315
8.2.1.1
Steady-state solution
315
8.2.1.2
Stability
317
8.2.1.3
Damping
319
8.2.2
Steady-state resonant sloshing due to horizontal
excitations
319
8.3
Single-dominant asymptotic nonlinear modal theory
323
8.3.1
Asymptotic modal system
323
8.3.1.1
Steady-state resonant waves: frequency-domain
solution
325
8.3.1.2
Time-domain solution and comparisons with
experiments
327
8.3.2 Nonimpulsive hydrodynamic
loads
337
8.3.2.1
Hydrodynamic pressure
337
8.3.2.2
Hydrodynamic force
338
8.3.2.3
Hydrodynamic moment relative to origin
О
339
8.3.2.4
Nonimpulsive
hydrodynamic loads on internal
structures
339
8.3.3
Coupled ship motion and sloshing
340
8.3.4
Applicability: effect of higher modes and secondary
resonance
341
8.4
Adaptive asymptotic modal system for finite liquid depth
343
8.4.1
Infinite-dimensional modal system
343
8.4.2
Hydrodynamic force and moment
345
8.4.3
Particular finite-dimensional modal systems
345
8.5
Critical depth
347
8.6
Asymptotic modal theory of Boussinesq-type for
lower-intermediate and shallow-liquid depths
352
8.6.1 Intermodal
ordering
352
8.6.2
Boussinesq-type
multimodal
system for intermediate and
shallow depths
353
8.6.3
Damping
355
8.7
Intermediate liquid depth
355
8.8
Shallow liquid depth
357
8.8.1
Use of the Boussinesq-type
multimodal
method for
intermediate and shallow depths
357
8.8.1.1
Transients
357
8.8.1.2
Steady-state regimes
358
8.8.2
Steady-state hydraulic jumps
361
8.9
Wave loads on interior structures in shallow liquid depth
371
8.10
Mathieu
instability for vertical tank excitation
373
8.11
Summary
375
8.11.1
Nonlinear
multimodal
method
375
8.11.2
Subharmonics
377
Contents · xiii
8.11.3
Damping
377
8.11.4
Hydraulic jumps
377
8.11.5
Hydrodynamic loads on interior structures
377
8.12
Exercises
377
8.12.1
Moiseev s asymptotic solution for a rectangular tank with
infinite depth
377
8.12.2
Mean steady-state hydrodynamic loads
378
8.12.3
Simulation by
multimodal
method
378
8.12.4
Force on a vertical circular cylinder for shallow depth
378
8.12.5
Mathieu-type instability
379
NONLINEAR ASYMPTOTIC THEORIES AND
EXPERIMENTS FOR THREE-DIMENSIONAL
SLOSHING
380
9.1
Introduction
380
9.1.1
Steady-state resonant wave regimes and hydrodynamic
instability
380
9.1.1.1
Theoretical treatment by the two lowest natural
modes
380
9.1.1.2
Experimental observations and measurements for a
nearly square-base tank
381
9.1.2
Bifurcation and stability
385
9.2
Rectangular-base tank with a finite liquid depth
387
9.2.1
Statement and generalization of adaptive modal system
(8.95) 387
9.2.2
Moiseev-based modal system for a nearly square-base
tank
388
9.2.3
Steady-state resonance solutions for a nearly square-base
tank
392
9.2.4
Classification of steady-state regimes for a square-base
tank with longitudinal and diagonal excitations
393
9.2.4.1
Longitudinal excitation
394
9.2.4.2
Diagonal excitation
400
9.2.5
Longitudinal excitation of a nearly square-base tank
401
9.2.6
Amplification of higher modes and adaptive modal
modeling for transients and swirling
408
9.2.6.1
Adaptive modal modeling and its accuracy
408
9.2.6.2
Transient amplitudes
409
9.2.6.3
Response for diagonal excitations
412
9.2.6.4
Response for longitudinal excitations
414
9.3
Vertical circular cylinder
417
9.3.1
Experiments
419
9.3.2
Modal equations
422
9.3.3
Steady-state solutions
424
9.4
Spherical tank
426
9.4.1
Wave regimes
428
9.4.2
Tower forces
430
xiv · Contents
9.5
Summary
432
9.5.1
Square-base tank
432
9.5.2
Nearly square-base tanks
433
9.5.3
Circular base
433
9.5.4
Spherical tank
433
9.6
Exercises
434
9.6.1 Multimodal
methods for square- and circular-base tanks
434
9.6.2
Spherical pendulum, planar, and rotary motions
434
9.6.3
Angular Stokes drift for swirling
435
9.6.4
Three-dimensional shallow-liquid equations in a
body-fixed accelerated coordinate system
436
9.6.5
Wave loads on a spherical tank with a tower
437
10
COMPUTATIONAL FLUID DYNAMICS
439
10.1
Introduction
439
10.2
Boundary element methods
444
10.2.1
Free-surface conditions
445
10.2.2
Generation of vorticity
447
10.2.3
Example: numerical discretization
447
10.2.4
Linear frequency-domain solutions
449
10.3
Finite difference method
450
10.3.1
Preliminaries
451
10.3.2
Governing equations
451
10.3.3
Interface capturing
452
10.3.3.1
Level-set technique
453
10.3.4
Introduction to numerical solution procedures
454
10.3.5
Time-stepping procedures
455
10.3.6
Spatial discretizations
456
10.3.7
Discretization of the convective and viscous terms
456
10.3.8
Discretization of the
Poisson
equation for pressure
457
10.3.9
Treatment of immersed boundaries
458
10.3.10
Constrained interpolation profile method
459
10.4
Finite volume method
460
10.4.1
Introduction
460
10.4.2
FVM applied to linear sloshing with potential
flow
462
10.4.2.1
Example
464
10.5
Finite element method
465
10.5.1
Introduction
465
10.5.2
A model problem
465
10.5.2.1
Numerical example
466
10.5.3
One-dimensional acoustic resonance
466
10.5.4
FEM
applied to linear sloshing with potential flow
468
10.5.4.1
Matrix system
470
10.5.4.2
Example
472
10.6
Smoothed particle hydrodynamics method
472
10.7
Summary
477
Contents · xv
10.8
Exercises
478
10.8.1
One-dimensional acoustic resonance
478
10.8.2
BEM
applied to steady flow past a cylinder in infinite
fluid
479
10.8.3
BEM
applied to linear sloshing with potential flow and
viscous damping
480
10.8.4
Application of
FEM
to the Navier-Stokes equations
480
10.8.5
SPH method
480
11
SLAMMING
481
11.1
Introduction
481
11.2
Scaling laws for model testing
484
11.3
Incompressible liquid impact on rigid tank roof without gas
cavities
488
11.3.1
Wagner model
489
11.3.1.1
Prediction of wetted surface
491
11.3.1.2
Spray root solution
492
11.3.2
Damping of sloshing due to tank roof impact
494
11.3.3
Three-dimensional liquid impact
496
11.4
Impact of steep waves against a vertical wall
497
11.4.1
Wagner-type model
500
11.4.2
Pressure-impulse theory
502
11.5
Tank roof impact at high filling ratios
503
11.6
Slamming with gas pocket
506
11.6.1
Natural frequency for a gas cavity
509
11.6.1.1
Simplified analysis
511
11.6.2
Damping of gas cavity oscillations
511
11.6.3
Forced oscillations of a gas cavity
513
11.6.3.1
Prediction of the wetted surface
515
11.6.3.2
Casestudy
515
11.6.4
Nonlinear gas cavity analysis
516
11.6.5
Scaling
516
11.7
Cavitation and boiling
522
11.8
Acoustic liquid effects
522
11.8.1
Two-dimensional liquid entry of body with horizontal
bottom
524
11.8.2
Liquid entry of parabolic contour
526
11.8.3
Hydraulic jump impact
526
11.8.4
Thin-layer approximation of liquid-gas mixture
527
11.9
Hydroe las tic slamming
528
11.9.1
Experimental study
532
11.9.2
Theoretical hydroelastic beam model
533
11.9.3
Comparisons between theory and experiments
537
11.9.4
Parameter study for full-scale tank
538
11.9.5
Model test scaling of hydroelasticity
544
11.9.6
Slamming in membrane tanks
545
11.10
Summary
548
xvi · Contents
11.11
Exercises
550
11.11.1
Impact force on a
wedge
550
11.11.2
Prediction of the wetted
surface
by Wagner s method
550
11.11.3
Integrated slamming loads on part of the tank roof
551
11.11.4
Impact of a liquid wedge
551
11.11.5
Acoustic impact of a hydraulic jump against a vertical
wall
551
APPENDIX: Integral Theorems
553
Bibliography
555
Index
571
This book presents sloshing with marine- and land-based applications, with a focus on ship
tanks, it also includes the nonlinear
multimodal
method developed by the authors and an
introduction to computational fluid dynamics. Emphasis is also placed on rational and
simplified methods, including several experimental results. Topics of special interest include
antirolling tanks, linear sloshing, viscous wave loads, damping, and slamming. The book
contains numerous illustrations, examples, and exercises.
Odd M. Faltinsen received his Ph.D. in naval architecture and marine engineering from the
university of Michigan in
1971
and has been a Professor of Marine Hydrodynamics at the
Norwegian university of science and Technology since 1
976.
Dr. Faltinsen has experience
with a broad spectrum of hydrodynamically related problems for ships and sea structures,
including hydroelastic problems,
не
has published approximately
300
scientific publications
and is the author of the textbooks sea Loads on ships and offshore Structures and Hydrodynamics
of High-speed Marine vehicles, published by Cambridge University Press in
1990
and
2005,
respectively. Faltinsen is a Foreign Associate of the National Academy of Engineering, USA,
and a Foreign Member of the Chinese Academy of Engineering.
Alexander
N.
Timokha obtained his Ph.D. in fluid dynamics from Kiev university in
1988
and, later, afull doctorate in physics and a mathematics degree
(habilitation)
in
1993
at the
institute of Mathematics of the National Academy of Sciences of Ukraine,
не
is now Leading
Researcher and Professor of Applied Mathematics at the institute of Mathematics, since
2004,
he has been a visiting Professor at cesos, Norwegian university of Science and Technology,
Trondheim,
Norway, in the
1
980s, he was involved as a consultant of hydrodynamic aspects
of spacecraft applications for the famous design offices of Yuzhnoye and
salut
Dr. Timokha s
current research interests lie in mathematical aspects of hydromechanics with emphasis on
free-surface problems in general and on sloshing in particular. He has authored more than
120
publications and
2
books.
|
any_adam_object | 1 |
author | Faltinsen, Odd M. Timokha, Alexander N. |
author_facet | Faltinsen, Odd M. Timokha, Alexander N. |
author_role | aut aut |
author_sort | Faltinsen, Odd M. |
author_variant | o m f om omf a n t an ant |
building | Verbundindex |
bvnumber | BV035775032 |
callnumber-first | T - Technology |
callnumber-label | TA357 |
callnumber-raw | TA357.5.S57 |
callnumber-search | TA357.5.S57 |
callnumber-sort | TA 3357.5 S57 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZO 6460 |
ctrlnum | (OCoLC)313077591 (DE-599)GBV59353123X |
dewey-full | 620.1/064 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/064 |
dewey-search | 620.1/064 |
dewey-sort | 3620.1 264 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Verkehr / Transport |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01884nam a2200457zc 4500</leader><controlfield tag="001">BV035775032</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150424 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">091016s2009 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009006711</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521881111</subfield><subfield code="9">978-0-521-88111-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)313077591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV59353123X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA357.5.S57</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/064</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZO 6460</subfield><subfield code="0">(DE-625)157807:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faltinsen, Odd M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sloshing</subfield><subfield code="c">Odd M. Faltinsen ; Alexander N. Timokha</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 577 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sloshing (Hydrodynamics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tank</subfield><subfield code="0">(DE-588)4125647-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schwappende Flüssigkeit</subfield><subfield code="0">(DE-588)7684756-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Frachtschiff</subfield><subfield code="0">(DE-588)4018026-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Frachtschiff</subfield><subfield code="0">(DE-588)4018026-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tank</subfield><subfield code="0">(DE-588)4125647-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Schwappende Flüssigkeit</subfield><subfield code="0">(DE-588)7684756-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timokha, Alexander N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018634641</subfield></datafield></record></collection> |
id | DE-604.BV035775032 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:04:15Z |
institution | BVB |
isbn | 9780521881111 |
language | English |
lccn | 2009006711 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018634641 |
oclc_num | 313077591 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XXVII, 577 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Faltinsen, Odd M. Verfasser aut Sloshing Odd M. Faltinsen ; Alexander N. Timokha 1. ed. Cambridge [u.a.] Cambridge Univ. Press 2009 XXVII, 577 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Sloshing (Hydrodynamics) Tank (DE-588)4125647-5 gnd rswk-swf Schwappende Flüssigkeit (DE-588)7684756-1 gnd rswk-swf Frachtschiff (DE-588)4018026-8 gnd rswk-swf Frachtschiff (DE-588)4018026-8 s Tank (DE-588)4125647-5 s Schwappende Flüssigkeit (DE-588)7684756-1 s DE-604 Timokha, Alexander N. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Faltinsen, Odd M. Timokha, Alexander N. Sloshing Sloshing (Hydrodynamics) Tank (DE-588)4125647-5 gnd Schwappende Flüssigkeit (DE-588)7684756-1 gnd Frachtschiff (DE-588)4018026-8 gnd |
subject_GND | (DE-588)4125647-5 (DE-588)7684756-1 (DE-588)4018026-8 |
title | Sloshing |
title_auth | Sloshing |
title_exact_search | Sloshing |
title_full | Sloshing Odd M. Faltinsen ; Alexander N. Timokha |
title_fullStr | Sloshing Odd M. Faltinsen ; Alexander N. Timokha |
title_full_unstemmed | Sloshing Odd M. Faltinsen ; Alexander N. Timokha |
title_short | Sloshing |
title_sort | sloshing |
topic | Sloshing (Hydrodynamics) Tank (DE-588)4125647-5 gnd Schwappende Flüssigkeit (DE-588)7684756-1 gnd Frachtschiff (DE-588)4018026-8 gnd |
topic_facet | Sloshing (Hydrodynamics) Tank Schwappende Flüssigkeit Frachtschiff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018634641&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT faltinsenoddm sloshing AT timokhaalexandern sloshing |