The Hodge-Laplacian :: boundary value problems on Riemannian manifolds /
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be partic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
2016.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
Volume 64. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 3110484382 9783110484380 9783110484397 3110484390 |
ISSN: | 0179-0986 ; |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn960041744 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 161007s2016 gw ob 000 0 eng d | ||
010 | |a 2016033433 | ||
040 | |a IDEBK |b eng |e rda |e pn |c IDEBK |d EBLCP |d CN3GA |d OCLCO |d IDEBK |d YDX |d N$T |d DEBBG |d IXA |d OCLCQ |d OCLCO |d OCLCQ |d OTZ |d CUI |d HEBIS |d OCLCO |d OCLCQ |d STF |d DEGRU |d MERUC |d SNK |d DKU |d IGB |d D6H |d COCUF |d OCLCQ |d CUY |d LOA |d K6U |d ICG |d ZCU |d OCLCQ |d VTS |d VT2 |d U3W |d OCLCO |d WYU |d OCLCQ |d G3B |d LVT |d S8J |d S9I |d TKN |d LEAUB |d DKC |d OCLCQ |d OCLCA |d M8D |d UKAHL |d OCLCQ |d QGK |d OCLCO |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d UEJ |d OCLCO |d OCLCQ | ||
019 | |a 962814406 |a 964379058 |a 964536249 |a 965345367 |a 1055377137 |a 1066561053 |a 1081199891 |a 1228604645 |a 1259184626 | ||
020 | |a 3110484382 |q (ebk) | ||
020 | |a 9783110484380 | ||
020 | |a 9783110484397 | ||
020 | |a 3110484390 | ||
020 | |z 3110482665 | ||
020 | |z 3110483394 | ||
020 | |z 9783110482669 | ||
020 | |z 9783110483390 |q (PDF) | ||
024 | 7 | |a 10.1515/9783110484380 |2 doi | |
035 | |a (OCoLC)960041744 |z (OCoLC)962814406 |z (OCoLC)964379058 |z (OCoLC)964536249 |z (OCoLC)965345367 |z (OCoLC)1055377137 |z (OCoLC)1066561053 |z (OCoLC)1081199891 |z (OCoLC)1228604645 |z (OCoLC)1259184626 | ||
037 | |a 957926 |b MIL | ||
050 | 4 | |a QA649 |b .M58 2016 | |
072 | 7 | |a MAT |x 012000 |2 bisacsh | |
082 | 7 | |a 516.373 | |
084 | |a 31B10 |a 31B25 |a 31C12 |a 35A01 |a 35B20 |a 35J08 |a 35J25 |a 35J55 |a 35J57 |a 35Q61 |a 35R01 |a 42B20 |a 42B25 |a 42B37 |a 45A05 |a 45B05 |a 45E05 |a 45F15 |a 45P05 |a 47B38 |a 47G10 |a 49Q15 |a 58A10 |a 58A12 |a 58A14 |a 58A15 |a 58A30 |a 58C35 |a 58J05 |a 58J32 |a 78A30 |2 msc | ||
084 | |a SK 540 |2 rvk |0 (DE-625)rvk/143245: | ||
049 | |a MAIN | ||
100 | 1 | |a Mitrea, Dorina, |d 1965- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJpv7q38fV6GvpykF4MpT3 |0 http://id.loc.gov/authorities/names/n00008814 | |
245 | 1 | 4 | |a The Hodge-Laplacian : |b boundary value problems on Riemannian manifolds / |c Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. |
264 | 1 | |a Berlin ; |a Boston : |b De Gruyter, |c 2016. | |
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter Studies in Mathematics, |x 0179-0986 ; |v Volume 64 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. | |
504 | |a Includes bibliographical references. | ||
520 | |a The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex. | ||
546 | |a In English. | ||
650 | 0 | |a Riemannian manifolds. |0 http://id.loc.gov/authorities/subjects/sh85114045 | |
650 | 0 | |a Boundary value problems. |0 http://id.loc.gov/authorities/subjects/sh85016102 | |
650 | 6 | |a Variétés de Riemann. | |
650 | 6 | |a Problèmes aux limites. | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Boundary value problems |2 fast | |
650 | 7 | |a Riemannian manifolds |2 fast | |
650 | 7 | |a Laplace-Operator |2 gnd |0 http://d-nb.info/gnd/4166772-4 | |
650 | 7 | |a Randwertproblem |2 gnd |0 http://d-nb.info/gnd/4048395-2 | |
650 | 7 | |a Riemannscher Raum |2 gnd | |
700 | 1 | |a Mitrea, Irina, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjBPBHxVXw3mppmqQYDb7d |0 http://id.loc.gov/authorities/names/no2013034542 | |
700 | 1 | |a Mitrea, Marius, |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjvkx4DKybCPwqHDrQjDdP |0 http://id.loc.gov/authorities/names/n94020722 | |
700 | 1 | |a Taylor, Michael E., |d 1946- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJyWYxDqHd4PfggBBgYwYP |0 http://id.loc.gov/authorities/names/n81009678 | |
758 | |i has work: |a The Hodge-Laplacian (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG49fwkG9hKCrbHBckF3Qq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Mitrea, Dorina. |t Hodge-Laplacian. |d Berlin, De Guyter, 2016 |z 9783110482669 |z 3110482665 |w (DLC) 2016033433 |w (OCoLC)951452997 |
830 | 0 | |a De Gruyter studies in mathematics ; |v Volume 64. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH30716020 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH35151839 | ||
938 | |a De Gruyter |b DEGR |n 9783110484380 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4707943 | ||
938 | |a EBSCOhost |b EBSC |n 1362730 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis34709323 | ||
938 | |a YBP Library Services |b YANK |n 12887094 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn960041744 |
---|---|
_version_ | 1816882364474720256 |
adam_text | |
any_adam_object | |
author | Mitrea, Dorina, 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael E., 1946- |
author_GND | http://id.loc.gov/authorities/names/n00008814 http://id.loc.gov/authorities/names/no2013034542 http://id.loc.gov/authorities/names/n94020722 http://id.loc.gov/authorities/names/n81009678 |
author_facet | Mitrea, Dorina, 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael E., 1946- |
author_role | aut aut aut aut |
author_sort | Mitrea, Dorina, 1965- |
author_variant | d m dm i m im m m mm m e t me met |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .M58 2016 |
callnumber-search | QA649 .M58 2016 |
callnumber-sort | QA 3649 M58 42016 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 540 |
collection | ZDB-4-EBA |
contents | Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. |
ctrlnum | (OCoLC)960041744 |
dewey-full | 516.373 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.373 |
dewey-search | 516.373 |
dewey-sort | 3516.373 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07466cam a2200805 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn960041744</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">161007s2016 gw ob 000 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a"> 2016033433</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">IDEBK</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CN3GA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBBG</subfield><subfield code="d">IXA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OTZ</subfield><subfield code="d">CUI</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">DEGRU</subfield><subfield code="d">MERUC</subfield><subfield code="d">SNK</subfield><subfield code="d">DKU</subfield><subfield code="d">IGB</subfield><subfield code="d">D6H</subfield><subfield code="d">COCUF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUY</subfield><subfield code="d">LOA</subfield><subfield code="d">K6U</subfield><subfield code="d">ICG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCO</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">LVT</subfield><subfield code="d">S8J</subfield><subfield code="d">S9I</subfield><subfield code="d">TKN</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UEJ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">962814406</subfield><subfield code="a">964379058</subfield><subfield code="a">964536249</subfield><subfield code="a">965345367</subfield><subfield code="a">1055377137</subfield><subfield code="a">1066561053</subfield><subfield code="a">1081199891</subfield><subfield code="a">1228604645</subfield><subfield code="a">1259184626</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110484382</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110484380</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110484397</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110484390</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110482665</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110483394</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110482669</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110483390</subfield><subfield code="q">(PDF)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110484380</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)960041744</subfield><subfield code="z">(OCoLC)962814406</subfield><subfield code="z">(OCoLC)964379058</subfield><subfield code="z">(OCoLC)964536249</subfield><subfield code="z">(OCoLC)965345367</subfield><subfield code="z">(OCoLC)1055377137</subfield><subfield code="z">(OCoLC)1066561053</subfield><subfield code="z">(OCoLC)1081199891</subfield><subfield code="z">(OCoLC)1228604645</subfield><subfield code="z">(OCoLC)1259184626</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">957926</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.M58 2016</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.373</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31B10</subfield><subfield code="a">31B25</subfield><subfield code="a">31C12</subfield><subfield code="a">35A01</subfield><subfield code="a">35B20</subfield><subfield code="a">35J08</subfield><subfield code="a">35J25</subfield><subfield code="a">35J55</subfield><subfield code="a">35J57</subfield><subfield code="a">35Q61</subfield><subfield code="a">35R01</subfield><subfield code="a">42B20</subfield><subfield code="a">42B25</subfield><subfield code="a">42B37</subfield><subfield code="a">45A05</subfield><subfield code="a">45B05</subfield><subfield code="a">45E05</subfield><subfield code="a">45F15</subfield><subfield code="a">45P05</subfield><subfield code="a">47B38</subfield><subfield code="a">47G10</subfield><subfield code="a">49Q15</subfield><subfield code="a">58A10</subfield><subfield code="a">58A12</subfield><subfield code="a">58A14</subfield><subfield code="a">58A15</subfield><subfield code="a">58A30</subfield><subfield code="a">58C35</subfield><subfield code="a">58J05</subfield><subfield code="a">58J32</subfield><subfield code="a">78A30</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="2">rvk</subfield><subfield code="0">(DE-625)rvk/143245:</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mitrea, Dorina,</subfield><subfield code="d">1965-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJpv7q38fV6GvpykF4MpT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n00008814</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The Hodge-Laplacian :</subfield><subfield code="b">boundary value problems on Riemannian manifolds /</subfield><subfield code="c">Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2016.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics,</subfield><subfield code="x">0179-0986 ;</subfield><subfield code="v">Volume 64</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Riemannian manifolds.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85114045</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Boundary value problems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85016102</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problèmes aux limites.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Boundary value problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannian manifolds</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Laplace-Operator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4166772-4</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4048395-2</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitrea, Irina,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBPBHxVXw3mppmqQYDb7d</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013034542</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitrea, Marius,</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvkx4DKybCPwqHDrQjDdP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94020722</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Michael E.,</subfield><subfield code="d">1946-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJyWYxDqHd4PfggBBgYwYP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81009678</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The Hodge-Laplacian (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG49fwkG9hKCrbHBckF3Qq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mitrea, Dorina.</subfield><subfield code="t">Hodge-Laplacian.</subfield><subfield code="d">Berlin, De Guyter, 2016</subfield><subfield code="z">9783110482669</subfield><subfield code="z">3110482665</subfield><subfield code="w">(DLC) 2016033433</subfield><subfield code="w">(OCoLC)951452997</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">Volume 64.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH30716020</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH35151839</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110484380</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4707943</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1362730</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis34709323</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">12887094</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn960041744 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:26Z |
institution | BVB |
isbn | 3110484382 9783110484380 9783110484397 3110484390 |
issn | 0179-0986 ; |
language | English |
lccn | 2016033433 |
oclc_num | 960041744 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2016 |
publishDateSearch | 2016 |
publishDateSort | 2016 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter Studies in Mathematics, |
spelling | Mitrea, Dorina, 1965- author. https://id.oclc.org/worldcat/entity/E39PBJpv7q38fV6GvpykF4MpT3 http://id.loc.gov/authorities/names/n00008814 The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. Berlin ; Boston : De Gruyter, 2016. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter Studies in Mathematics, 0179-0986 ; Volume 64 Print version record. Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. Includes bibliographical references. The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Calderón-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincaré, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents:PrefaceIntroduction and Statement of Main ResultsGeometric Concepts and ToolsHarmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR DomainsHarmonic Layer Potentials Associated with the Levi-Civita Connection on UR DomainsDirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT DomainsFatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT DomainsSolvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham FormalismAdditional Results and ApplicationsFurther Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford AnalysisBibliographyIndex. In English. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Variétés de Riemann. Problèmes aux limites. MATHEMATICS Geometry General. bisacsh Boundary value problems fast Riemannian manifolds fast Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Riemannscher Raum gnd Mitrea, Irina, author. https://id.oclc.org/worldcat/entity/E39PCjBPBHxVXw3mppmqQYDb7d http://id.loc.gov/authorities/names/no2013034542 Mitrea, Marius, author. https://id.oclc.org/worldcat/entity/E39PCjvkx4DKybCPwqHDrQjDdP http://id.loc.gov/authorities/names/n94020722 Taylor, Michael E., 1946- author. https://id.oclc.org/worldcat/entity/E39PBJyWYxDqHd4PfggBBgYwYP http://id.loc.gov/authorities/names/n81009678 has work: The Hodge-Laplacian (Text) https://id.oclc.org/worldcat/entity/E39PCG49fwkG9hKCrbHBckF3Qq https://id.oclc.org/worldcat/ontology/hasWork Print version: Mitrea, Dorina. Hodge-Laplacian. Berlin, De Guyter, 2016 9783110482669 3110482665 (DLC) 2016033433 (OCoLC)951452997 De Gruyter studies in mathematics ; Volume 64. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730 Volltext |
spellingShingle | Mitrea, Dorina, 1965- Mitrea, Irina Mitrea, Marius Taylor, Michael E., 1946- The Hodge-Laplacian : boundary value problems on Riemannian manifolds / De Gruyter studies in mathematics ; Preface ; Contents ; 1 Introduction and Statement of Main Results ; 1.1 First Main Result: Absolute and Relative Boundary Conditions ; 1.2 Other Problems Involving Tangential and Normal Components of Harmonic Forms ; 1.3 Boundary Value Problems for Hodge-Dirac Operators; 1.4 Dirichlet, Neumann, Transmission, Poincaré, and Robin-Type Boundary Problems 1.5 Structure of the Monograph ; 2 Geometric Concepts and Tools ; 2.1 Differential Geometric Preliminaries ; 2.2 Elements of Geometric Measure Theory; 2.3 Sharp Integration by Parts Formulas for Differential Forms in Ahlfors Regular Domains 2.4 Tangential and Normal Differential Forms on Ahlfors Regular Sets ; 3 Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains; 3.1 A Fundamental Solution for the Hodge-Laplacian 3.2 Layer Potentials for the Hodge-Laplacian in the Hodge-de Rham Formalism ; 3.3 Fredholm Theory for Layer Potentials in the Hodge-de Rham Formalism ; 4 Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains; 4.1 The Definition and Mapping Properties of the Double Layer 4.2 The Double Layer on UR Subdomains of Smooth Manifolds ; 4.3 Compactness of the Double Layer on Regular SKT Domains ; 5 Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains. Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Variétés de Riemann. Problèmes aux limites. MATHEMATICS Geometry General. bisacsh Boundary value problems fast Riemannian manifolds fast Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Riemannscher Raum gnd |
subject_GND | http://id.loc.gov/authorities/subjects/sh85114045 http://id.loc.gov/authorities/subjects/sh85016102 http://d-nb.info/gnd/4166772-4 http://d-nb.info/gnd/4048395-2 |
title | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / |
title_auth | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / |
title_exact_search | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / |
title_full | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. |
title_fullStr | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. |
title_full_unstemmed | The Hodge-Laplacian : boundary value problems on Riemannian manifolds / Dorina Mitrea, Irina Mitrea, Marius Mitrea, and Michael Taylor. |
title_short | The Hodge-Laplacian : |
title_sort | hodge laplacian boundary value problems on riemannian manifolds |
title_sub | boundary value problems on Riemannian manifolds / |
topic | Riemannian manifolds. http://id.loc.gov/authorities/subjects/sh85114045 Boundary value problems. http://id.loc.gov/authorities/subjects/sh85016102 Variétés de Riemann. Problèmes aux limites. MATHEMATICS Geometry General. bisacsh Boundary value problems fast Riemannian manifolds fast Laplace-Operator gnd http://d-nb.info/gnd/4166772-4 Randwertproblem gnd http://d-nb.info/gnd/4048395-2 Riemannscher Raum gnd |
topic_facet | Riemannian manifolds. Boundary value problems. Variétés de Riemann. Problèmes aux limites. MATHEMATICS Geometry General. Boundary value problems Riemannian manifolds Laplace-Operator Randwertproblem Riemannscher Raum |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1362730 |
work_keys_str_mv | AT mitreadorina thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreairina thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreamarius thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT taylormichaele thehodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreadorina hodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreairina hodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT mitreamarius hodgelaplacianboundaryvalueproblemsonriemannianmanifolds AT taylormichaele hodgelaplacianboundaryvalueproblemsonriemannianmanifolds |