SHATTERED SYMMETRY :: group theory from the eightfold way to the periodic table.
Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
OXFORD :
OXFORD University Press,
2017.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 0190611405 9780190611408 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn967254118 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 161227s2017 enk ob 001 0 eng d | ||
040 | |a YDX |b eng |e pn |c YDX |d N$T |d EBLCP |d N$T |d OCLCO |d OCLCF |d OCLCQ |d UAB |d N$T |d COO |d MERUC |d CGU |d OCLCQ |d EZ9 |d OCLCQ |d LVT |d ESU |d OCLCQ |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 967317502 |a 975027109 |a 975081705 |a 983646975 |a 988759217 |a 1035443262 | ||
020 | |a 0190611405 |q (electronic bk.) | ||
020 | |a 9780190611408 |q (electronic bk.) | ||
020 | |z 9780190611392 | ||
020 | |z 0190611391 | ||
035 | |a (OCoLC)967254118 |z (OCoLC)967317502 |z (OCoLC)975027109 |z (OCoLC)975081705 |z (OCoLC)983646975 |z (OCoLC)988759217 |z (OCoLC)1035443262 | ||
050 | 4 | |a QC20.7.G76 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a THYSSEN, PIETER; CEULEMANS, ARNOUT. | |
245 | 1 | 0 | |a SHATTERED SYMMETRY : |b group theory from the eightfold way to the periodic table. |
260 | |a OXFORD : |b OXFORD University Press, |c 2017. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS. | |
505 | 8 | |a 2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2). | |
505 | 8 | |a 3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture. | |
505 | 8 | |a 4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA. | |
505 | 8 | |a 5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations. | |
520 | |a Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Group theory. |0 http://id.loc.gov/authorities/subjects/sh85057512 | |
650 | 0 | |a Symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh85131443 | |
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 0 | |a Periodic table of the elements. |0 http://id.loc.gov/authorities/subjects/sh2014000656 | |
650 | 6 | |a Théorie des groupes. | |
650 | 6 | |a Symétrie (Physique) | |
650 | 6 | |a Algèbres de Lie. | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 6 | |a Classification périodique des éléments. | |
650 | 7 | |a periodic table. |2 aat | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Group theory |2 fast | |
650 | 7 | |a Lie algebras |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Periodic table of the elements |2 fast | |
650 | 7 | |a Symmetry (Physics) |2 fast | |
758 | |i has work: |a Shattered symmetry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGY9tHJRwRp9vHhCtVJhVy |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a THYSSEN, PIETER; CEULEMANS, ARNOUT. |t SHATTERED SYMMETRY. |d OXFORD : OXFORD University Press, 2017 |z 9780190611392 |z 0190611391 |w (DLC) 2016017431 |w (OCoLC)946987565 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1444102 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH32984549 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL4773410 | ||
938 | |a EBSCOhost |b EBSC |n 1444102 | ||
938 | |a YBP Library Services |b YANK |n 13314891 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn967254118 |
---|---|
_version_ | 1816882373907709953 |
adam_text | |
any_adam_object | |
author | THYSSEN, PIETER; CEULEMANS, ARNOUT |
author_facet | THYSSEN, PIETER; CEULEMANS, ARNOUT |
author_role | |
author_sort | THYSSEN, PIETER; CEULEMANS, ARNOUT |
author_variant | p c a t pca pcat |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.G76 |
callnumber-search | QC20.7.G76 |
callnumber-sort | QC 220.7 G76 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS. 2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2). 3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture. 4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA. 5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations. |
ctrlnum | (OCoLC)967254118 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06224cam a2200709 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn967254118</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">161227s2017 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDX</subfield><subfield code="d">N$T</subfield><subfield code="d">EBLCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">N$T</subfield><subfield code="d">COO</subfield><subfield code="d">MERUC</subfield><subfield code="d">CGU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LVT</subfield><subfield code="d">ESU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">967317502</subfield><subfield code="a">975027109</subfield><subfield code="a">975081705</subfield><subfield code="a">983646975</subfield><subfield code="a">988759217</subfield><subfield code="a">1035443262</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0190611405</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780190611408</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780190611392</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0190611391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)967254118</subfield><subfield code="z">(OCoLC)967317502</subfield><subfield code="z">(OCoLC)975027109</subfield><subfield code="z">(OCoLC)975081705</subfield><subfield code="z">(OCoLC)983646975</subfield><subfield code="z">(OCoLC)988759217</subfield><subfield code="z">(OCoLC)1035443262</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.G76</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">THYSSEN, PIETER; CEULEMANS, ARNOUT.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">SHATTERED SYMMETRY :</subfield><subfield code="b">group theory from the eightfold way to the periodic table.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">OXFORD :</subfield><subfield code="b">OXFORD University Press,</subfield><subfield code="c">2017.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85057512</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131443</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Periodic table of the elements.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2014000656</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Classification périodique des éléments.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">periodic table.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Periodic table of the elements</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Shattered symmetry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGY9tHJRwRp9vHhCtVJhVy</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">THYSSEN, PIETER; CEULEMANS, ARNOUT.</subfield><subfield code="t">SHATTERED SYMMETRY.</subfield><subfield code="d">OXFORD : OXFORD University Press, 2017</subfield><subfield code="z">9780190611392</subfield><subfield code="z">0190611391</subfield><subfield code="w">(DLC) 2016017431</subfield><subfield code="w">(OCoLC)946987565</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1444102</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH32984549</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL4773410</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">1444102</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13314891</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn967254118 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:27:35Z |
institution | BVB |
isbn | 0190611405 9780190611408 |
language | English |
oclc_num | 967254118 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | OXFORD University Press, |
record_format | marc |
spelling | THYSSEN, PIETER; CEULEMANS, ARNOUT. SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. OXFORD : OXFORD University Press, 2017. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS. 2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2). 3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture. 4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA. 5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations. Symmetry and its breaking is at the heart of our understanding of matter. The book tells the tale of two constituents of matter quarks and atoms from a common symmetry perspective. Includes bibliographical references and index. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Periodic table of the elements. http://id.loc.gov/authorities/subjects/sh2014000656 Théorie des groupes. Symétrie (Physique) Algèbres de Lie. Logique symbolique et mathématique. Classification périodique des éléments. periodic table. aat MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast Logic, Symbolic and mathematical fast Periodic table of the elements fast Symmetry (Physics) fast has work: Shattered symmetry (Text) https://id.oclc.org/worldcat/entity/E39PCGY9tHJRwRp9vHhCtVJhVy https://id.oclc.org/worldcat/ontology/hasWork Print version: THYSSEN, PIETER; CEULEMANS, ARNOUT. SHATTERED SYMMETRY. OXFORD : OXFORD University Press, 2017 9780190611392 0190611391 (DLC) 2016017431 (OCoLC)946987565 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1444102 Volltext |
spellingShingle | THYSSEN, PIETER; CEULEMANS, ARNOUT SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. Cover; Half Title page; Title page; Copyright page; Dedication; Contents; List of Figures; List of Tables; Preface; PART ONE SPACE SYMMETRIES; 1 A primer on symmetry; 1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS; 1.1.1 Entrance exams; 1.1.2 Publish or perish; 1.1.3 Galois' mathematical testament; 1.2 THE CONCEPT OF SYMMETRY; 1.2.1 Symmetry defined; 1.2.2 The symmetries of a triangle; 1.2.3 Quantifying symmetry; 1.2.4 Discrete and continuous symmetries; 1.2.5 Multiplying symmetries; 2 The elements of group theory; 2.1 MATHEMATICAL DEFINITION; 2.2 THE ABSTRACT AND THE CONCRETE; 2.3 ABELIAN GROUPS. 2.4 EXAMPLES OF GROUPS2.5 SUBGROUPS; 2.6 SYMMETRY BREAKING; 2.7 ISOMORPHISMS AND HOMOMORPHISMS; 2.8 HISTORICAL INTERLUDE; 2.8.1 Évariste Galois; 2.8.2 The French school; 2.8.3 Sir Arthur Cayley; 3 The axial rotation group; 3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY; 3.2 ROTATION OPERATORS; 3.3 THE AXIAL ROTATION GROUP; 3.4 TRANSFORMATIONS OF COORDINATES; 3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS; 3.6 MATRIX REPRESENTATIONS; 3.6.1 Matrix representation of coordinate operators R; 3.6.2 Matrix representation of function operators \hat{R}; 3.7 THE ORTHOGONAL GROUP O(2). 3.7.1 Symmetry and invariance3.7.2 Proper and improper rotation matrices; 3.7.3 Orthogonal groups: O(2) and SO(2); 4 The SO(2) group; 4.1 INFINITE CONTINUOUS GROUPS; 4.1.1 The nature of infinite continuous groups; 4.1.2 Parameters of continuous groups; 4.1.3 Examples of continuous groups; 4.1.4 The composition functions; 4.2 LIE GROUPS; 4.2.1 Definition; 4.2.2 Parameter space; 4.2.3 Connectedness and compactness; 4.3 THE INFINITESIMAL GENERATOR; 4.3.1 Matrix form of the SO(2) generator; 4.3.2 Operator form of the SO(2) generator; 4.4 ANGULAR MOMENTUM; 4.4.1 Classical mechanical picture. 4.4.2 Quantum mechanical picture4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES; 4.5.1 The particle on a ring model; 4.5.2 The shell perspective; 4.5.3 Aromatic molecules; 5 The SO(3) group; 5.1 THE SPHERICAL ROTATION GROUP; 5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS; 5.2.1 Rotation matrices; 5.2.2 The orthogonal group O(3); 5.2.3 The special orthogonal group SO(3); 5.3 ROTATIONS AND SO(3); 5.3.1 Orthogonality and skew-symmetry; 5.3.2 The matrix representing an infinitesimal rotation; 5.3.3 The exponential map; 5.3.4 The Euler parameterization; 5.4 THE so(3) LIE ALGEBRA. 5.4.1 The so(3) generators5.4.2 Operator form of the SO(3) generators; 5.5 ROTATIONS IN QUANTUM MECHANICS; 5.5.1 Angular momentum as the generator of rotations; 5.5.2 The rotation operator; 5.6 ANGULAR MOMENTUM; 5.6.1 The angular momentum algebra; 5.6.2 Casimir invariants; 5.6.3 The eigenvalue problem; 5.6.4 Dirac's ladder operator method; 5.7 APPLICATION: PARTICLE ON A SPHERE; 5.7.1 Spherical components of the Hamiltonian; 5.7.2 The flooded planet model and Buckminsterfullerene; 5.8 EPILOGUE; 6 Scholium I; 6.1 SYMMETRY IN QUANTUM MECHANICS; 6.1.1 State vector transformations. Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Periodic table of the elements. http://id.loc.gov/authorities/subjects/sh2014000656 Théorie des groupes. Symétrie (Physique) Algèbres de Lie. Logique symbolique et mathématique. Classification périodique des éléments. periodic table. aat MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast Logic, Symbolic and mathematical fast Periodic table of the elements fast Symmetry (Physics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85057512 http://id.loc.gov/authorities/subjects/sh85131443 http://id.loc.gov/authorities/subjects/sh85076782 http://id.loc.gov/authorities/subjects/sh85078115 http://id.loc.gov/authorities/subjects/sh2014000656 |
title | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_auth | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_exact_search | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_full | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_fullStr | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_full_unstemmed | SHATTERED SYMMETRY : group theory from the eightfold way to the periodic table. |
title_short | SHATTERED SYMMETRY : |
title_sort | shattered symmetry group theory from the eightfold way to the periodic table |
title_sub | group theory from the eightfold way to the periodic table. |
topic | Group theory. http://id.loc.gov/authorities/subjects/sh85057512 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Periodic table of the elements. http://id.loc.gov/authorities/subjects/sh2014000656 Théorie des groupes. Symétrie (Physique) Algèbres de Lie. Logique symbolique et mathématique. Classification périodique des éléments. periodic table. aat MATHEMATICS Algebra Intermediate. bisacsh Group theory fast Lie algebras fast Logic, Symbolic and mathematical fast Periodic table of the elements fast Symmetry (Physics) fast |
topic_facet | Group theory. Symmetry (Physics) Lie algebras. Logic, Symbolic and mathematical. Periodic table of the elements. Théorie des groupes. Symétrie (Physique) Algèbres de Lie. Logique symbolique et mathématique. Classification périodique des éléments. periodic table. MATHEMATICS Algebra Intermediate. Group theory Lie algebras Logic, Symbolic and mathematical Periodic table of the elements |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1444102 |
work_keys_str_mv | AT thyssenpieterceulemansarnout shatteredsymmetrygrouptheoryfromtheeightfoldwaytotheperiodictable |