Domain Generalization with Machine Learning in the NOvA Experiment:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature Switzerland
2023
Cham Springer |
Ausgabe: | 1st ed. 2023 |
Schriftenreihe: | Springer Theses, Recognizing Outstanding Ph.D. Research
|
Schlagworte: | |
Online-Zugang: | TUM01 UBM01 UBT01 UBY01 Volltext |
Beschreibung: | 1 Online-Ressource (XI, 170 p. 73 illus., 63 illus. in color) |
ISBN: | 9783031435836 |
ISSN: | 2190-5061 |
DOI: | 10.1007/978-3-031-43583-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049442011 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231201s2023 |||| o||u| ||||||eng d | ||
020 | |a 9783031435836 |c Online |9 978-3-031-43583-6 | ||
024 | 7 | |a 10.1007/978-3-031-43583-6 |2 doi | |
035 | |a (ZDB-2-PHA)9783031435836 | ||
035 | |a (OCoLC)1414564020 | ||
035 | |a (DE-599)BVBBV049442011 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-19 |a DE-706 |a DE-703 | ||
082 | 0 | |a 539.72 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Sutton, Andrew T.C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Domain Generalization with Machine Learning in the NOvA Experiment |c by Andrew T.C. Sutton |
250 | |a 1st ed. 2023 | ||
264 | 1 | |a Cham |b Springer Nature Switzerland |c 2023 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (XI, 170 p. 73 illus., 63 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Theses, Recognizing Outstanding Ph.D. Research |x 2190-5061 | |
650 | 4 | |a Particle Physics | |
650 | 4 | |a Accelerator Physics | |
650 | 4 | |a Measurement Science and Instrumentation | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Computational Physics and Simulations | |
650 | 4 | |a Particles (Nuclear physics) | |
650 | 4 | |a Particle accelerators | |
650 | 4 | |a Measurement | |
650 | 4 | |a Measuring instruments | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Computer simulation | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-43582-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-43584-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-43585-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-031-43583-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-PHA | ||
940 | 1 | |q ZDB-2-PHA_2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034787977 | ||
966 | e | |u https://doi.org/10.1007/978-3-031-43583-6 |l TUM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-43583-6 |l UBM01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-43583-6 |l UBT01 |p ZDB-2-PHA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-43583-6 |l UBY01 |p ZDB-2-PHA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186194557272064 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sutton, Andrew T.C |
author_facet | Sutton, Andrew T.C |
author_role | aut |
author_sort | Sutton, Andrew T.C |
author_variant | a t s at ats |
building | Verbundindex |
bvnumber | BV049442011 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA |
ctrlnum | (ZDB-2-PHA)9783031435836 (OCoLC)1414564020 (DE-599)BVBBV049442011 |
dewey-full | 539.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.72 |
dewey-search | 539.72 |
dewey-sort | 3539.72 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
doi_str_mv | 10.1007/978-3-031-43583-6 |
edition | 1st ed. 2023 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02343nmm a2200601zcb4500</leader><controlfield tag="001">BV049442011</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231201s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031435836</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-031-43583-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-43583-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-PHA)9783031435836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414564020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049442011</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sutton, Andrew T.C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Domain Generalization with Machine Learning in the NOvA Experiment</subfield><subfield code="c">by Andrew T.C. Sutton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature Switzerland</subfield><subfield code="c">2023</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 170 p. 73 illus., 63 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Theses, Recognizing Outstanding Ph.D. Research</subfield><subfield code="x">2190-5061</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accelerator Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement Science and Instrumentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Physics and Simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particles (Nuclear physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Particle accelerators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measuring instruments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-43582-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-43584-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-43585-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-031-43583-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034787977</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-43583-6</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-43583-6</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-43583-6</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-43583-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-PHA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049442011 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:12:10Z |
indexdate | 2024-07-10T10:07:15Z |
institution | BVB |
isbn | 9783031435836 |
issn | 2190-5061 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034787977 |
oclc_num | 1414564020 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-706 DE-703 |
owner_facet | DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-706 DE-703 |
physical | 1 Online-Ressource (XI, 170 p. 73 illus., 63 illus. in color) |
psigel | ZDB-2-PHA ZDB-2-PHA_2023 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer Nature Switzerland Springer |
record_format | marc |
series2 | Springer Theses, Recognizing Outstanding Ph.D. Research |
spelling | Sutton, Andrew T.C. Verfasser aut Domain Generalization with Machine Learning in the NOvA Experiment by Andrew T.C. Sutton 1st ed. 2023 Cham Springer Nature Switzerland 2023 Cham Springer 1 Online-Ressource (XI, 170 p. 73 illus., 63 illus. in color) txt rdacontent c rdamedia cr rdacarrier Springer Theses, Recognizing Outstanding Ph.D. Research 2190-5061 Particle Physics Accelerator Physics Measurement Science and Instrumentation Machine Learning Computational Physics and Simulations Particles (Nuclear physics) Particle accelerators Measurement Measuring instruments Machine learning Mathematical physics Computer simulation Erscheint auch als Druck-Ausgabe 978-3-031-43582-9 Erscheint auch als Druck-Ausgabe 978-3-031-43584-3 Erscheint auch als Druck-Ausgabe 978-3-031-43585-0 https://doi.org/10.1007/978-3-031-43583-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Sutton, Andrew T.C Domain Generalization with Machine Learning in the NOvA Experiment Particle Physics Accelerator Physics Measurement Science and Instrumentation Machine Learning Computational Physics and Simulations Particles (Nuclear physics) Particle accelerators Measurement Measuring instruments Machine learning Mathematical physics Computer simulation |
title | Domain Generalization with Machine Learning in the NOvA Experiment |
title_auth | Domain Generalization with Machine Learning in the NOvA Experiment |
title_exact_search | Domain Generalization with Machine Learning in the NOvA Experiment |
title_exact_search_txtP | Domain Generalization with Machine Learning in the NOvA Experiment |
title_full | Domain Generalization with Machine Learning in the NOvA Experiment by Andrew T.C. Sutton |
title_fullStr | Domain Generalization with Machine Learning in the NOvA Experiment by Andrew T.C. Sutton |
title_full_unstemmed | Domain Generalization with Machine Learning in the NOvA Experiment by Andrew T.C. Sutton |
title_short | Domain Generalization with Machine Learning in the NOvA Experiment |
title_sort | domain generalization with machine learning in the nova experiment |
topic | Particle Physics Accelerator Physics Measurement Science and Instrumentation Machine Learning Computational Physics and Simulations Particles (Nuclear physics) Particle accelerators Measurement Measuring instruments Machine learning Mathematical physics Computer simulation |
topic_facet | Particle Physics Accelerator Physics Measurement Science and Instrumentation Machine Learning Computational Physics and Simulations Particles (Nuclear physics) Particle accelerators Measurement Measuring instruments Machine learning Mathematical physics Computer simulation |
url | https://doi.org/10.1007/978-3-031-43583-6 |
work_keys_str_mv | AT suttonandrewtc domaingeneralizationwithmachinelearninginthenovaexperiment |