Geometric mechanics and symmetry /:
Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanic...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Oxford University Press,
2009.
|
Schriftenreihe: | Oxford texts in applied and engineering mathematics ;
12. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such asn-particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and S. |
Beschreibung: | 1 online resource (xvi, 515 pages) : illustrations (some color) |
Bibliographie: | Includes bibliographical references (pages 504-508) and index. |
ISBN: | 9780191549861 019154986X 0199212902 9780199212903 0199212910 9780199212910 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn489471462 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 091217s2009 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d OCLCQ |d EBLCP |d IDEBK |d E7B |d OCLCQ |d MHW |d OCLCQ |d DEBSZ |d OCLCQ |d NLGGC |d OCLCO |d CDX |d OCLCF |d COO |d OCLCQ |d S3O |d OCLCQ |d AZK |d LOA |d AGLDB |d MOR |d LIP |d PIFAG |d ZCU |d OTZ |d OCLCQ |d MERUC |d OCLCQ |d U3W |d UUM |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d AU@ |d OCLCQ |d DKC |d OCLCQ |d UKCRE |d SXB |d OCLCO |d OCLCQ |d YDX |d OCLCO |d OCLCL | ||
016 | 7 | |a 014821128 |2 Uk | |
019 | |a 499452121 |a 646862585 |a 961644653 |a 962125830 |a 962676091 |a 966258894 |a 988412198 |a 992003221 |a 994899040 |a 1037920415 |a 1038582973 |a 1045498519 |a 1058091255 |a 1058094570 |a 1065117154 |a 1153548531 | ||
020 | |a 9780191549861 |q (electronic bk.) | ||
020 | |a 019154986X |q (electronic bk.) | ||
020 | |a 0199212902 |q (hardback) | ||
020 | |a 9780199212903 |q (hardback) | ||
020 | |a 0199212910 |q (pbk.) | ||
020 | |a 9780199212910 |q (pbk.) | ||
020 | |z 9780199212903 |q (hardback) | ||
020 | |z 9780199212910 |q (pbk.) | ||
024 | 8 | |a 2982350 | |
035 | |a (OCoLC)489471462 |z (OCoLC)499452121 |z (OCoLC)646862585 |z (OCoLC)961644653 |z (OCoLC)962125830 |z (OCoLC)962676091 |z (OCoLC)966258894 |z (OCoLC)988412198 |z (OCoLC)992003221 |z (OCoLC)994899040 |z (OCoLC)1037920415 |z (OCoLC)1038582973 |z (OCoLC)1045498519 |z (OCoLC)1058091255 |z (OCoLC)1058094570 |z (OCoLC)1065117154 |z (OCoLC)1153548531 | ||
050 | 4 | |a QA807.5 |b .H65 2009eb | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
082 | 7 | |a 531.01/516 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Holm, Darryl D. |0 http://id.loc.gov/authorities/names/n85031568 | |
245 | 1 | 0 | |a Geometric mechanics and symmetry / |c Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis. |
260 | |a New York : |b Oxford University Press, |c 2009. | ||
300 | |a 1 online resource (xvi, 515 pages) : |b illustrations (some color) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Oxford texts in applied and engineering mathematics ; |v 12 | |
504 | |a Includes bibliographical references (pages 504-508) and index. | ||
505 | 0 | |a Lagrangian and Hamiltonian mechanics -- Manifolds -- Geometry on manifolds -- Mechanics on manifolds -- Lie groups and Lie algebras -- Group actions, symmetries, and reduction -- Euler-Poincaré reduction : rigid body and heavy top -- Momentum maps -- Lie-Poisson reduction -- Pseudo-rigid bodies -- EPDiff -- EPDiff solution behavior -- Integrability of EPDiff in 1D -- EPDiff in n dimensions -- Computational anatomy : contour matching using EPDiff -- Computational anatomy : Euler-Poincaré image matching -- Continuum equations with advection -- Euler-Poincaré theorem for geophysical fluid dynamics. | |
520 | |a Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such asn-particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and S. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Mechanics. |0 http://id.loc.gov/authorities/subjects/sh85082767 | |
650 | 0 | |a Geometry. |0 http://id.loc.gov/authorities/subjects/sh85054133 | |
650 | 0 | |a Symmetry (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh2006001303 | |
650 | 4 | |a Applied Mathematics. | |
650 | 4 | |a Algebra. | |
650 | 4 | |a Mathematics. | |
650 | 4 | |a Engineering & Applied Sciences. | |
650 | 4 | |a Physical Sciences & Mathematics. | |
650 | 6 | |a Mécanique. | |
650 | 6 | |a Géométrie. | |
650 | 6 | |a Symétrie (Mathématiques) | |
650 | 7 | |a mechanics (physics) |2 aat | |
650 | 7 | |a geometry. |2 aat | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Geometry |2 fast | |
650 | 7 | |a Mechanics |2 fast | |
650 | 7 | |a Symmetry (Mathematics) |2 fast | |
700 | 1 | |a Schmah, Tanya. |0 http://id.loc.gov/authorities/names/n2009029131 | |
700 | 1 | |a Stoica, Cristina, |d 1967- |1 https://id.oclc.org/worldcat/entity/E39PCjxFB8WkY4W7RmKV4VRMyd |0 http://id.loc.gov/authorities/names/n2009029133 | |
758 | |i has work: |a Geometric mechanics and symmetry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJMv48RG6rhHgDKCydGBK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Holm, Darryl D. |t Geometric mechanics and symmetry. |d New York : Oxford University Press, 2009 |z 9780199212903 |w (DLC) 2009019331 |w (OCoLC)323197814 |
830 | 0 | |a Oxford texts in applied and engineering mathematics ; |v 12. |0 http://id.loc.gov/authorities/names/n2002012016 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=298455 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 20451133 | ||
938 | |a Coutts Information Services |b COUT |n 11333143 | ||
938 | |a EBSCOhost |b EBSC |n 298455 | ||
938 | |a YBP Library Services |b YANK |n 3138183 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn489471462 |
---|---|
_version_ | 1816881701896323072 |
adam_text | |
any_adam_object | |
author | Holm, Darryl D. |
author2 | Schmah, Tanya Stoica, Cristina, 1967- |
author2_role | |
author2_variant | t s ts c s cs |
author_GND | http://id.loc.gov/authorities/names/n85031568 http://id.loc.gov/authorities/names/n2009029131 http://id.loc.gov/authorities/names/n2009029133 |
author_facet | Holm, Darryl D. Schmah, Tanya Stoica, Cristina, 1967- |
author_role | |
author_sort | Holm, Darryl D. |
author_variant | d d h dd ddh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA807 |
callnumber-raw | QA807.5 .H65 2009eb |
callnumber-search | QA807.5 .H65 2009eb |
callnumber-sort | QA 3807.5 H65 42009EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Lagrangian and Hamiltonian mechanics -- Manifolds -- Geometry on manifolds -- Mechanics on manifolds -- Lie groups and Lie algebras -- Group actions, symmetries, and reduction -- Euler-Poincaré reduction : rigid body and heavy top -- Momentum maps -- Lie-Poisson reduction -- Pseudo-rigid bodies -- EPDiff -- EPDiff solution behavior -- Integrability of EPDiff in 1D -- EPDiff in n dimensions -- Computational anatomy : contour matching using EPDiff -- Computational anatomy : Euler-Poincaré image matching -- Continuum equations with advection -- Euler-Poincaré theorem for geophysical fluid dynamics. |
ctrlnum | (OCoLC)489471462 |
dewey-full | 531.01/516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531.01/516 |
dewey-search | 531.01/516 |
dewey-sort | 3531.01 3516 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05418cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn489471462</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">091217s2009 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">LIP</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014821128</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">499452121</subfield><subfield code="a">646862585</subfield><subfield code="a">961644653</subfield><subfield code="a">962125830</subfield><subfield code="a">962676091</subfield><subfield code="a">966258894</subfield><subfield code="a">988412198</subfield><subfield code="a">992003221</subfield><subfield code="a">994899040</subfield><subfield code="a">1037920415</subfield><subfield code="a">1038582973</subfield><subfield code="a">1045498519</subfield><subfield code="a">1058091255</subfield><subfield code="a">1058094570</subfield><subfield code="a">1065117154</subfield><subfield code="a">1153548531</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191549861</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">019154986X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199212902</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199212903</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199212910</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199212910</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199212903</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199212910</subfield><subfield code="q">(pbk.)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">2982350</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)489471462</subfield><subfield code="z">(OCoLC)499452121</subfield><subfield code="z">(OCoLC)646862585</subfield><subfield code="z">(OCoLC)961644653</subfield><subfield code="z">(OCoLC)962125830</subfield><subfield code="z">(OCoLC)962676091</subfield><subfield code="z">(OCoLC)966258894</subfield><subfield code="z">(OCoLC)988412198</subfield><subfield code="z">(OCoLC)992003221</subfield><subfield code="z">(OCoLC)994899040</subfield><subfield code="z">(OCoLC)1037920415</subfield><subfield code="z">(OCoLC)1038582973</subfield><subfield code="z">(OCoLC)1045498519</subfield><subfield code="z">(OCoLC)1058091255</subfield><subfield code="z">(OCoLC)1058094570</subfield><subfield code="z">(OCoLC)1065117154</subfield><subfield code="z">(OCoLC)1153548531</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA807.5</subfield><subfield code="b">.H65 2009eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531.01/516</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holm, Darryl D.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85031568</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric mechanics and symmetry /</subfield><subfield code="c">Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2009.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 515 pages) :</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford texts in applied and engineering mathematics ;</subfield><subfield code="v">12</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 504-508) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lagrangian and Hamiltonian mechanics -- Manifolds -- Geometry on manifolds -- Mechanics on manifolds -- Lie groups and Lie algebras -- Group actions, symmetries, and reduction -- Euler-Poincaré reduction : rigid body and heavy top -- Momentum maps -- Lie-Poisson reduction -- Pseudo-rigid bodies -- EPDiff -- EPDiff solution behavior -- Integrability of EPDiff in 1D -- EPDiff in n dimensions -- Computational anatomy : contour matching using EPDiff -- Computational anatomy : Euler-Poincaré image matching -- Continuum equations with advection -- Euler-Poincaré theorem for geophysical fluid dynamics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such asn-particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and S.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082767</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054133</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symmetry (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2006001303</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applied Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering & Applied Sciences.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Sciences & Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mechanics (physics)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">geometry.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schmah, Tanya.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2009029131</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoica, Cristina,</subfield><subfield code="d">1967-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjxFB8WkY4W7RmKV4VRMyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2009029133</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometric mechanics and symmetry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJMv48RG6rhHgDKCydGBK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Holm, Darryl D.</subfield><subfield code="t">Geometric mechanics and symmetry.</subfield><subfield code="d">New York : Oxford University Press, 2009</subfield><subfield code="z">9780199212903</subfield><subfield code="w">(DLC) 2009019331</subfield><subfield code="w">(OCoLC)323197814</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford texts in applied and engineering mathematics ;</subfield><subfield code="v">12.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2002012016</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=298455</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">20451133</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">11333143</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">298455</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3138183</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn489471462 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:16:54Z |
institution | BVB |
isbn | 9780191549861 019154986X 0199212902 9780199212903 0199212910 9780199212910 |
language | English |
oclc_num | 489471462 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvi, 515 pages) : illustrations (some color) |
psigel | ZDB-4-EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Oxford University Press, |
record_format | marc |
series | Oxford texts in applied and engineering mathematics ; |
series2 | Oxford texts in applied and engineering mathematics ; |
spelling | Holm, Darryl D. http://id.loc.gov/authorities/names/n85031568 Geometric mechanics and symmetry / Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis. New York : Oxford University Press, 2009. 1 online resource (xvi, 515 pages) : illustrations (some color) text txt rdacontent computer c rdamedia online resource cr rdacarrier Oxford texts in applied and engineering mathematics ; 12 Includes bibliographical references (pages 504-508) and index. Lagrangian and Hamiltonian mechanics -- Manifolds -- Geometry on manifolds -- Mechanics on manifolds -- Lie groups and Lie algebras -- Group actions, symmetries, and reduction -- Euler-Poincaré reduction : rigid body and heavy top -- Momentum maps -- Lie-Poisson reduction -- Pseudo-rigid bodies -- EPDiff -- EPDiff solution behavior -- Integrability of EPDiff in 1D -- EPDiff in n dimensions -- Computational anatomy : contour matching using EPDiff -- Computational anatomy : Euler-Poincaré image matching -- Continuum equations with advection -- Euler-Poincaré theorem for geophysical fluid dynamics. Classical mechanics, one of the oldest branches of science, has undergone a long evolution, developing hand in hand with many areas of mathematics, including calculus, differential geometry, and the theory of Lie groups and Lie algebras. The modern formulations of Lagrangian and Hamiltonian mechanics, in the coordinate-free language of differential geometry, are elegant and general. They provide a unifying framework for many seemingly disparate physical systems, such asn-particle systems, rigid bodies, fluids and other continua, and electromagnetic and quantum systems. Geometric Mechanics and S. Print version record. Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Symmetry (Mathematics) http://id.loc.gov/authorities/subjects/sh2006001303 Applied Mathematics. Algebra. Mathematics. Engineering & Applied Sciences. Physical Sciences & Mathematics. Mécanique. Géométrie. Symétrie (Mathématiques) mechanics (physics) aat geometry. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Geometry fast Mechanics fast Symmetry (Mathematics) fast Schmah, Tanya. http://id.loc.gov/authorities/names/n2009029131 Stoica, Cristina, 1967- https://id.oclc.org/worldcat/entity/E39PCjxFB8WkY4W7RmKV4VRMyd http://id.loc.gov/authorities/names/n2009029133 has work: Geometric mechanics and symmetry (Text) https://id.oclc.org/worldcat/entity/E39PCGJMv48RG6rhHgDKCydGBK https://id.oclc.org/worldcat/ontology/hasWork Print version: Holm, Darryl D. Geometric mechanics and symmetry. New York : Oxford University Press, 2009 9780199212903 (DLC) 2009019331 (OCoLC)323197814 Oxford texts in applied and engineering mathematics ; 12. http://id.loc.gov/authorities/names/n2002012016 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=298455 Volltext |
spellingShingle | Holm, Darryl D. Geometric mechanics and symmetry / Oxford texts in applied and engineering mathematics ; Lagrangian and Hamiltonian mechanics -- Manifolds -- Geometry on manifolds -- Mechanics on manifolds -- Lie groups and Lie algebras -- Group actions, symmetries, and reduction -- Euler-Poincaré reduction : rigid body and heavy top -- Momentum maps -- Lie-Poisson reduction -- Pseudo-rigid bodies -- EPDiff -- EPDiff solution behavior -- Integrability of EPDiff in 1D -- EPDiff in n dimensions -- Computational anatomy : contour matching using EPDiff -- Computational anatomy : Euler-Poincaré image matching -- Continuum equations with advection -- Euler-Poincaré theorem for geophysical fluid dynamics. Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Symmetry (Mathematics) http://id.loc.gov/authorities/subjects/sh2006001303 Applied Mathematics. Algebra. Mathematics. Engineering & Applied Sciences. Physical Sciences & Mathematics. Mécanique. Géométrie. Symétrie (Mathématiques) mechanics (physics) aat geometry. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Geometry fast Mechanics fast Symmetry (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082767 http://id.loc.gov/authorities/subjects/sh85054133 http://id.loc.gov/authorities/subjects/sh2006001303 |
title | Geometric mechanics and symmetry / |
title_auth | Geometric mechanics and symmetry / |
title_exact_search | Geometric mechanics and symmetry / |
title_full | Geometric mechanics and symmetry / Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis. |
title_fullStr | Geometric mechanics and symmetry / Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis. |
title_full_unstemmed | Geometric mechanics and symmetry / Darryl D. Holm, Tanya Schmah, Cristina Stoica ; with solutions to selected exercises by David C.P. Ellis. |
title_short | Geometric mechanics and symmetry / |
title_sort | geometric mechanics and symmetry |
topic | Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Symmetry (Mathematics) http://id.loc.gov/authorities/subjects/sh2006001303 Applied Mathematics. Algebra. Mathematics. Engineering & Applied Sciences. Physical Sciences & Mathematics. Mécanique. Géométrie. Symétrie (Mathématiques) mechanics (physics) aat geometry. aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Geometry fast Mechanics fast Symmetry (Mathematics) fast |
topic_facet | Mechanics. Geometry. Symmetry (Mathematics) Applied Mathematics. Algebra. Mathematics. Engineering & Applied Sciences. Physical Sciences & Mathematics. Mécanique. Géométrie. Symétrie (Mathématiques) mechanics (physics) geometry. SCIENCE Mechanics General. SCIENCE Mechanics Solids. Geometry Mechanics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=298455 |
work_keys_str_mv | AT holmdarryld geometricmechanicsandsymmetry AT schmahtanya geometricmechanicsandsymmetry AT stoicacristina geometricmechanicsandsymmetry |