Data quality: empowering businesses with analytics and AI
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
Wiley
[2023]
|
Schlagworte: | |
Online-Zugang: | HWR01 UEI03 |
Beschreibung: | 1 Online-Ressource (xxvi, 271 Seiten) Illustrationen |
ISBN: | 9781394165247 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048831589 | ||
003 | DE-604 | ||
005 | 20231026 | ||
007 | cr|uuu---uuuuu | ||
008 | 230224s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781394165247 |c epub |9 978-1-394-16524-7 | ||
035 | |a (ZDB-30-PQE)EBC7184814 | ||
035 | |a (ZDB-30-PAD)EBC7184814 | ||
035 | |a (ZDB-89-EBL)EBL7184814 | ||
035 | |a (OCoLC)1371326660 | ||
035 | |a (DE-599)BVBBV048831589 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s |a DE-945 | ||
084 | |a ST 505 |0 (DE-625)143675: |2 rvk | ||
100 | 1 | |a Southekal, Prashanth H. |e Verfasser |0 (DE-588)1148770135 |4 aut | |
245 | 1 | 0 | |a Data quality |b empowering businesses with analytics and AI |c Prashanth H. Southekal |
264 | 1 | |a Newark |b Wiley |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xxvi, 271 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I Define Phase -- Chapter 1 Introduction -- Introduction -- Data, Analytics, AI, and Business Performance -- Data as a Business Asset or Liability -- Data Governance, Data Management, and Data Quality -- Leadership Commitment to Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 2 Business Data -- Introduction -- Data in Business -- Telemetry Data -- Purpose of Data in Business -- Business Data Views -- Key Characteristics of Business Data -- Critical Data Elements (CDEs) -- Key Takeaways -- Conclusion -- References -- Chapter 3 Data Quality in Business -- Introduction -- Data Quality Dimensions -- Context in Data Quality -- Consequences and Costs of Poor Data Quality -- Data Depreciation and Its Factors -- Data in IT Systems -- Data Quality and Trusted Information -- Key Takeaways -- Conclusion -- References -- Part II Analyze Phase -- Chapter 4 Causes for Poor Data Quality -- Introduction -- Data Quality RCA Techniques -- Typical Causes of Poor Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 5 Data Lifecycle and Lineage -- Introduction -- Business-Enabled DLC Stages -- IT Business-Enabled DLC Stages -- Data Lineage -- Key Takeaways -- Conclusion -- References -- Chapter 6 Profiling for Data Quality -- Introduction -- Criteria for Data Profiling -- Data Profiling Techniques for Measures of Centrality -- Data Profiling Techniques for Measures of Variation -- Integrating Centrality and Variation KPIs -- Key Takeaways -- Conclusion -- References -- Part III Realize Phase -- Chapter 7 Reference Architecture for Data Quality -- Introduction -- Options to Remediate Data Quality -- DataOps -- Data Product -- Data Fabric and Data Mesh -- Data Enrichment -- Key Takeaways -- Conclusion -- References | |
505 | 8 | |a Chapter 8 Best Practices to Realize Data Quality -- Introduction -- Overview of Best Practices -- BP 1: Identify the Business KPIs and the Ownership of These KPIs and the Pertinent Data -- BP 2: Build and Improve the Data Culture and Literacy in the Organization -- BP 3: Define the Current and Desired State of Data Quality -- BP 4: Follow the Minimalistic Approach to Data Capture -- BP 5: Select and Define the Data Attributes for Data Quality -- BP 6: Capture and Manage Critical Data with Data Standards in MDM Systems -- Key Takeaways -- Conclusion -- References -- Chapter 9 Best Practices to Realize Data Quality -- Introduction -- BP 7: Rationalize and Automate the Integration of Critical Data Elements -- BP 8: Define the SoR and Securely Capture Transactional Data in the SoR/OLTP System -- BP 9: Build and Manage Robust Data Integration Capabilities -- BP 10: Distribute Data Sourcing and Insight Consumption -- Key Takeaways -- Conclusion -- References -- Part IV Sustain Phase -- Chapter 10 Data Governance -- Introduction -- Data Governance Principles -- Data Governance Design Components -- Implementing the Data Governance Program -- Data Observability -- Data Compliance - ISO 27001, SOC1, and SOC2 -- Key Takeaways -- Conclusion -- References -- Chapter 11 Protecting Data -- Introduction -- Data Classification -- Data Safety -- Data Security -- Key Takeaways -- Conclusion -- References -- Chapter 12 Data Ethics -- Introduction -- Data Ethics -- Importance of Data Ethics -- Principles of Data Ethics -- Model Drift in Data Ethics -- Data Privacy -- Managing Data Ethically -- Key Takeaways -- Conclusion -- References -- Appendix 1: Abbreviations and Acronyms -- Appendix 2: Glossary -- Appendix 3: Data Literacy Competencies -- About the Author -- Index -- EULA. | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenqualität |0 (DE-588)1036653315 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a Datenqualität |0 (DE-588)1036653315 |D s |
689 | 0 | 2 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Southekal, Prashanth |t Data Quality |d Newark : John Wiley & Sons, Incorporated,c2023 |z 9781394165230 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 9781394165254 |
912 | |a ZDB-30-PQE |a ZDB-4-NLEBK | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034097167 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7184814 |l HWR01 |p ZDB-30-PQE |q HWR_PDA_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3535820 |l UEI03 |p ZDB-4-NLEBK |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184933538725888 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Southekal, Prashanth H. |
author_GND | (DE-588)1148770135 |
author_facet | Southekal, Prashanth H. |
author_role | aut |
author_sort | Southekal, Prashanth H. |
author_variant | p h s ph phs |
building | Verbundindex |
bvnumber | BV048831589 |
classification_rvk | ST 505 |
collection | ZDB-30-PQE ZDB-4-NLEBK |
contents | Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I Define Phase -- Chapter 1 Introduction -- Introduction -- Data, Analytics, AI, and Business Performance -- Data as a Business Asset or Liability -- Data Governance, Data Management, and Data Quality -- Leadership Commitment to Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 2 Business Data -- Introduction -- Data in Business -- Telemetry Data -- Purpose of Data in Business -- Business Data Views -- Key Characteristics of Business Data -- Critical Data Elements (CDEs) -- Key Takeaways -- Conclusion -- References -- Chapter 3 Data Quality in Business -- Introduction -- Data Quality Dimensions -- Context in Data Quality -- Consequences and Costs of Poor Data Quality -- Data Depreciation and Its Factors -- Data in IT Systems -- Data Quality and Trusted Information -- Key Takeaways -- Conclusion -- References -- Part II Analyze Phase -- Chapter 4 Causes for Poor Data Quality -- Introduction -- Data Quality RCA Techniques -- Typical Causes of Poor Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 5 Data Lifecycle and Lineage -- Introduction -- Business-Enabled DLC Stages -- IT Business-Enabled DLC Stages -- Data Lineage -- Key Takeaways -- Conclusion -- References -- Chapter 6 Profiling for Data Quality -- Introduction -- Criteria for Data Profiling -- Data Profiling Techniques for Measures of Centrality -- Data Profiling Techniques for Measures of Variation -- Integrating Centrality and Variation KPIs -- Key Takeaways -- Conclusion -- References -- Part III Realize Phase -- Chapter 7 Reference Architecture for Data Quality -- Introduction -- Options to Remediate Data Quality -- DataOps -- Data Product -- Data Fabric and Data Mesh -- Data Enrichment -- Key Takeaways -- Conclusion -- References Chapter 8 Best Practices to Realize Data Quality -- Introduction -- Overview of Best Practices -- BP 1: Identify the Business KPIs and the Ownership of These KPIs and the Pertinent Data -- BP 2: Build and Improve the Data Culture and Literacy in the Organization -- BP 3: Define the Current and Desired State of Data Quality -- BP 4: Follow the Minimalistic Approach to Data Capture -- BP 5: Select and Define the Data Attributes for Data Quality -- BP 6: Capture and Manage Critical Data with Data Standards in MDM Systems -- Key Takeaways -- Conclusion -- References -- Chapter 9 Best Practices to Realize Data Quality -- Introduction -- BP 7: Rationalize and Automate the Integration of Critical Data Elements -- BP 8: Define the SoR and Securely Capture Transactional Data in the SoR/OLTP System -- BP 9: Build and Manage Robust Data Integration Capabilities -- BP 10: Distribute Data Sourcing and Insight Consumption -- Key Takeaways -- Conclusion -- References -- Part IV Sustain Phase -- Chapter 10 Data Governance -- Introduction -- Data Governance Principles -- Data Governance Design Components -- Implementing the Data Governance Program -- Data Observability -- Data Compliance - ISO 27001, SOC1, and SOC2 -- Key Takeaways -- Conclusion -- References -- Chapter 11 Protecting Data -- Introduction -- Data Classification -- Data Safety -- Data Security -- Key Takeaways -- Conclusion -- References -- Chapter 12 Data Ethics -- Introduction -- Data Ethics -- Importance of Data Ethics -- Principles of Data Ethics -- Model Drift in Data Ethics -- Data Privacy -- Managing Data Ethically -- Key Takeaways -- Conclusion -- References -- Appendix 1: Abbreviations and Acronyms -- Appendix 2: Glossary -- Appendix 3: Data Literacy Competencies -- About the Author -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC7184814 (ZDB-30-PAD)EBC7184814 (ZDB-89-EBL)EBL7184814 (OCoLC)1371326660 (DE-599)BVBBV048831589 |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05643nmm a2200481zc 4500</leader><controlfield tag="001">BV048831589</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231026 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">230224s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394165247</subfield><subfield code="c">epub</subfield><subfield code="9">978-1-394-16524-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7184814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7184814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7184814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1371326660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048831589</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield><subfield code="a">DE-945</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 505</subfield><subfield code="0">(DE-625)143675:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Southekal, Prashanth H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1148770135</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data quality</subfield><subfield code="b">empowering businesses with analytics and AI</subfield><subfield code="c">Prashanth H. Southekal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">Wiley</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxvi, 271 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I Define Phase -- Chapter 1 Introduction -- Introduction -- Data, Analytics, AI, and Business Performance -- Data as a Business Asset or Liability -- Data Governance, Data Management, and Data Quality -- Leadership Commitment to Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 2 Business Data -- Introduction -- Data in Business -- Telemetry Data -- Purpose of Data in Business -- Business Data Views -- Key Characteristics of Business Data -- Critical Data Elements (CDEs) -- Key Takeaways -- Conclusion -- References -- Chapter 3 Data Quality in Business -- Introduction -- Data Quality Dimensions -- Context in Data Quality -- Consequences and Costs of Poor Data Quality -- Data Depreciation and Its Factors -- Data in IT Systems -- Data Quality and Trusted Information -- Key Takeaways -- Conclusion -- References -- Part II Analyze Phase -- Chapter 4 Causes for Poor Data Quality -- Introduction -- Data Quality RCA Techniques -- Typical Causes of Poor Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 5 Data Lifecycle and Lineage -- Introduction -- Business-Enabled DLC Stages -- IT Business-Enabled DLC Stages -- Data Lineage -- Key Takeaways -- Conclusion -- References -- Chapter 6 Profiling for Data Quality -- Introduction -- Criteria for Data Profiling -- Data Profiling Techniques for Measures of Centrality -- Data Profiling Techniques for Measures of Variation -- Integrating Centrality and Variation KPIs -- Key Takeaways -- Conclusion -- References -- Part III Realize Phase -- Chapter 7 Reference Architecture for Data Quality -- Introduction -- Options to Remediate Data Quality -- DataOps -- Data Product -- Data Fabric and Data Mesh -- Data Enrichment -- Key Takeaways -- Conclusion -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 8 Best Practices to Realize Data Quality -- Introduction -- Overview of Best Practices -- BP 1: Identify the Business KPIs and the Ownership of These KPIs and the Pertinent Data -- BP 2: Build and Improve the Data Culture and Literacy in the Organization -- BP 3: Define the Current and Desired State of Data Quality -- BP 4: Follow the Minimalistic Approach to Data Capture -- BP 5: Select and Define the Data Attributes for Data Quality -- BP 6: Capture and Manage Critical Data with Data Standards in MDM Systems -- Key Takeaways -- Conclusion -- References -- Chapter 9 Best Practices to Realize Data Quality -- Introduction -- BP 7: Rationalize and Automate the Integration of Critical Data Elements -- BP 8: Define the SoR and Securely Capture Transactional Data in the SoR/OLTP System -- BP 9: Build and Manage Robust Data Integration Capabilities -- BP 10: Distribute Data Sourcing and Insight Consumption -- Key Takeaways -- Conclusion -- References -- Part IV Sustain Phase -- Chapter 10 Data Governance -- Introduction -- Data Governance Principles -- Data Governance Design Components -- Implementing the Data Governance Program -- Data Observability -- Data Compliance - ISO 27001, SOC1, and SOC2 -- Key Takeaways -- Conclusion -- References -- Chapter 11 Protecting Data -- Introduction -- Data Classification -- Data Safety -- Data Security -- Key Takeaways -- Conclusion -- References -- Chapter 12 Data Ethics -- Introduction -- Data Ethics -- Importance of Data Ethics -- Principles of Data Ethics -- Model Drift in Data Ethics -- Data Privacy -- Managing Data Ethically -- Key Takeaways -- Conclusion -- References -- Appendix 1: Abbreviations and Acronyms -- Appendix 2: Glossary -- Appendix 3: Data Literacy Competencies -- About the Author -- Index -- EULA.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenqualität</subfield><subfield code="0">(DE-588)1036653315</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenqualität</subfield><subfield code="0">(DE-588)1036653315</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Southekal, Prashanth</subfield><subfield code="t">Data Quality</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2023</subfield><subfield code="z">9781394165230</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">9781394165254</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034097167</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=7184814</subfield><subfield code="l">HWR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3535820</subfield><subfield code="l">UEI03</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048831589 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:35:29Z |
indexdate | 2024-07-10T09:47:13Z |
institution | BVB |
isbn | 9781394165247 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034097167 |
oclc_num | 1371326660 |
open_access_boolean | |
owner | DE-2070s DE-945 |
owner_facet | DE-2070s DE-945 |
physical | 1 Online-Ressource (xxvi, 271 Seiten) Illustrationen |
psigel | ZDB-30-PQE ZDB-4-NLEBK ZDB-30-PQE HWR_PDA_PQE_Kauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Wiley |
record_format | marc |
spelling | Southekal, Prashanth H. Verfasser (DE-588)1148770135 aut Data quality empowering businesses with analytics and AI Prashanth H. Southekal Newark Wiley [2023] © 2023 1 Online-Ressource (xxvi, 271 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I Define Phase -- Chapter 1 Introduction -- Introduction -- Data, Analytics, AI, and Business Performance -- Data as a Business Asset or Liability -- Data Governance, Data Management, and Data Quality -- Leadership Commitment to Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 2 Business Data -- Introduction -- Data in Business -- Telemetry Data -- Purpose of Data in Business -- Business Data Views -- Key Characteristics of Business Data -- Critical Data Elements (CDEs) -- Key Takeaways -- Conclusion -- References -- Chapter 3 Data Quality in Business -- Introduction -- Data Quality Dimensions -- Context in Data Quality -- Consequences and Costs of Poor Data Quality -- Data Depreciation and Its Factors -- Data in IT Systems -- Data Quality and Trusted Information -- Key Takeaways -- Conclusion -- References -- Part II Analyze Phase -- Chapter 4 Causes for Poor Data Quality -- Introduction -- Data Quality RCA Techniques -- Typical Causes of Poor Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 5 Data Lifecycle and Lineage -- Introduction -- Business-Enabled DLC Stages -- IT Business-Enabled DLC Stages -- Data Lineage -- Key Takeaways -- Conclusion -- References -- Chapter 6 Profiling for Data Quality -- Introduction -- Criteria for Data Profiling -- Data Profiling Techniques for Measures of Centrality -- Data Profiling Techniques for Measures of Variation -- Integrating Centrality and Variation KPIs -- Key Takeaways -- Conclusion -- References -- Part III Realize Phase -- Chapter 7 Reference Architecture for Data Quality -- Introduction -- Options to Remediate Data Quality -- DataOps -- Data Product -- Data Fabric and Data Mesh -- Data Enrichment -- Key Takeaways -- Conclusion -- References Chapter 8 Best Practices to Realize Data Quality -- Introduction -- Overview of Best Practices -- BP 1: Identify the Business KPIs and the Ownership of These KPIs and the Pertinent Data -- BP 2: Build and Improve the Data Culture and Literacy in the Organization -- BP 3: Define the Current and Desired State of Data Quality -- BP 4: Follow the Minimalistic Approach to Data Capture -- BP 5: Select and Define the Data Attributes for Data Quality -- BP 6: Capture and Manage Critical Data with Data Standards in MDM Systems -- Key Takeaways -- Conclusion -- References -- Chapter 9 Best Practices to Realize Data Quality -- Introduction -- BP 7: Rationalize and Automate the Integration of Critical Data Elements -- BP 8: Define the SoR and Securely Capture Transactional Data in the SoR/OLTP System -- BP 9: Build and Manage Robust Data Integration Capabilities -- BP 10: Distribute Data Sourcing and Insight Consumption -- Key Takeaways -- Conclusion -- References -- Part IV Sustain Phase -- Chapter 10 Data Governance -- Introduction -- Data Governance Principles -- Data Governance Design Components -- Implementing the Data Governance Program -- Data Observability -- Data Compliance - ISO 27001, SOC1, and SOC2 -- Key Takeaways -- Conclusion -- References -- Chapter 11 Protecting Data -- Introduction -- Data Classification -- Data Safety -- Data Security -- Key Takeaways -- Conclusion -- References -- Chapter 12 Data Ethics -- Introduction -- Data Ethics -- Importance of Data Ethics -- Principles of Data Ethics -- Model Drift in Data Ethics -- Data Privacy -- Managing Data Ethically -- Key Takeaways -- Conclusion -- References -- Appendix 1: Abbreviations and Acronyms -- Appendix 2: Glossary -- Appendix 3: Data Literacy Competencies -- About the Author -- Index -- EULA. Datenanalyse (DE-588)4123037-1 gnd rswk-swf Datenmanagement (DE-588)4213132-7 gnd rswk-swf Datenqualität (DE-588)1036653315 gnd rswk-swf Datenanalyse (DE-588)4123037-1 s Datenqualität (DE-588)1036653315 s Datenmanagement (DE-588)4213132-7 s DE-604 Erscheint auch als Druck-Ausgabe Southekal, Prashanth Data Quality Newark : John Wiley & Sons, Incorporated,c2023 9781394165230 Erscheint auch als Online-Ausgabe, PDF 9781394165254 |
spellingShingle | Southekal, Prashanth H. Data quality empowering businesses with analytics and AI Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Part I Define Phase -- Chapter 1 Introduction -- Introduction -- Data, Analytics, AI, and Business Performance -- Data as a Business Asset or Liability -- Data Governance, Data Management, and Data Quality -- Leadership Commitment to Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 2 Business Data -- Introduction -- Data in Business -- Telemetry Data -- Purpose of Data in Business -- Business Data Views -- Key Characteristics of Business Data -- Critical Data Elements (CDEs) -- Key Takeaways -- Conclusion -- References -- Chapter 3 Data Quality in Business -- Introduction -- Data Quality Dimensions -- Context in Data Quality -- Consequences and Costs of Poor Data Quality -- Data Depreciation and Its Factors -- Data in IT Systems -- Data Quality and Trusted Information -- Key Takeaways -- Conclusion -- References -- Part II Analyze Phase -- Chapter 4 Causes for Poor Data Quality -- Introduction -- Data Quality RCA Techniques -- Typical Causes of Poor Data Quality -- Key Takeaways -- Conclusion -- References -- Chapter 5 Data Lifecycle and Lineage -- Introduction -- Business-Enabled DLC Stages -- IT Business-Enabled DLC Stages -- Data Lineage -- Key Takeaways -- Conclusion -- References -- Chapter 6 Profiling for Data Quality -- Introduction -- Criteria for Data Profiling -- Data Profiling Techniques for Measures of Centrality -- Data Profiling Techniques for Measures of Variation -- Integrating Centrality and Variation KPIs -- Key Takeaways -- Conclusion -- References -- Part III Realize Phase -- Chapter 7 Reference Architecture for Data Quality -- Introduction -- Options to Remediate Data Quality -- DataOps -- Data Product -- Data Fabric and Data Mesh -- Data Enrichment -- Key Takeaways -- Conclusion -- References Chapter 8 Best Practices to Realize Data Quality -- Introduction -- Overview of Best Practices -- BP 1: Identify the Business KPIs and the Ownership of These KPIs and the Pertinent Data -- BP 2: Build and Improve the Data Culture and Literacy in the Organization -- BP 3: Define the Current and Desired State of Data Quality -- BP 4: Follow the Minimalistic Approach to Data Capture -- BP 5: Select and Define the Data Attributes for Data Quality -- BP 6: Capture and Manage Critical Data with Data Standards in MDM Systems -- Key Takeaways -- Conclusion -- References -- Chapter 9 Best Practices to Realize Data Quality -- Introduction -- BP 7: Rationalize and Automate the Integration of Critical Data Elements -- BP 8: Define the SoR and Securely Capture Transactional Data in the SoR/OLTP System -- BP 9: Build and Manage Robust Data Integration Capabilities -- BP 10: Distribute Data Sourcing and Insight Consumption -- Key Takeaways -- Conclusion -- References -- Part IV Sustain Phase -- Chapter 10 Data Governance -- Introduction -- Data Governance Principles -- Data Governance Design Components -- Implementing the Data Governance Program -- Data Observability -- Data Compliance - ISO 27001, SOC1, and SOC2 -- Key Takeaways -- Conclusion -- References -- Chapter 11 Protecting Data -- Introduction -- Data Classification -- Data Safety -- Data Security -- Key Takeaways -- Conclusion -- References -- Chapter 12 Data Ethics -- Introduction -- Data Ethics -- Importance of Data Ethics -- Principles of Data Ethics -- Model Drift in Data Ethics -- Data Privacy -- Managing Data Ethically -- Key Takeaways -- Conclusion -- References -- Appendix 1: Abbreviations and Acronyms -- Appendix 2: Glossary -- Appendix 3: Data Literacy Competencies -- About the Author -- Index -- EULA. Datenanalyse (DE-588)4123037-1 gnd Datenmanagement (DE-588)4213132-7 gnd Datenqualität (DE-588)1036653315 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4213132-7 (DE-588)1036653315 |
title | Data quality empowering businesses with analytics and AI |
title_auth | Data quality empowering businesses with analytics and AI |
title_exact_search | Data quality empowering businesses with analytics and AI |
title_exact_search_txtP | Data quality empowering businesses with analytics and AI |
title_full | Data quality empowering businesses with analytics and AI Prashanth H. Southekal |
title_fullStr | Data quality empowering businesses with analytics and AI Prashanth H. Southekal |
title_full_unstemmed | Data quality empowering businesses with analytics and AI Prashanth H. Southekal |
title_short | Data quality |
title_sort | data quality empowering businesses with analytics and ai |
title_sub | empowering businesses with analytics and AI |
topic | Datenanalyse (DE-588)4123037-1 gnd Datenmanagement (DE-588)4213132-7 gnd Datenqualität (DE-588)1036653315 gnd |
topic_facet | Datenanalyse Datenmanagement Datenqualität |
work_keys_str_mv | AT southekalprashanthh dataqualityempoweringbusinesseswithanalyticsandai |