Quantum stochastic processes and noncommutative geometry /:
The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2007.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
169. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics. |
Beschreibung: | 1 online resource (x, 290 pages) |
Bibliographie: | Includes bibliographical references (pages 281-287) and index. |
ISBN: | 9780511269974 0511269978 9780521834506 0521834503 0511268378 9780511268373 9780511618529 0511618522 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn166273342 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 070823s2007 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCQ |d OSU |d DLC |d IG# |d OCLCQ |d OCLCO |d OCLCQ |d OCLCF |d OCLCQ |d E7B |d AZU |d COO |d AU@ |d IDEBK |d OCLCQ |d OCLCA |d UAB |d OCLCQ |d OL$ |d UIU |d OCLCQ |d OCLCO |d OCLCQ |d AUW |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 231754323 |a 271789341 |a 519762282 |a 648130705 | ||
020 | |a 9780511269974 |q (electronic bk.) | ||
020 | |a 0511269978 |q (electronic bk.) | ||
020 | |a 9780521834506 |q (hardback) | ||
020 | |a 0521834503 |q (hardback) | ||
020 | |a 0511268378 |q (ebook ; |q ebrary) | ||
020 | |a 9780511268373 |q (ebook ; |q ebrary) | ||
020 | |a 9780511618529 | ||
020 | |a 0511618522 | ||
035 | |a (OCoLC)166273342 |z (OCoLC)231754323 |z (OCoLC)271789341 |z (OCoLC)519762282 |z (OCoLC)648130705 | ||
050 | 4 | |a QA274 |b .G67 2007eb | |
072 | 7 | |a MAT |x 029040 |2 bisacsh | |
082 | 7 | |a 519.2/3 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Sinha, Kalyan B. |q (Kalyan Bidhan), |d 1944- |1 https://id.oclc.org/worldcat/entity/E39PCjGgFkgy3wTTt7VTKyHMxC | |
245 | 1 | 0 | |a Quantum stochastic processes and noncommutative geometry / |c Kalyan B. Sinha, Debashish Goswami. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2007. | ||
300 | |a 1 online resource (x, 290 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 169 | |
504 | |a Includes bibliographical references (pages 281-287) and index. | ||
505 | 0 | |a Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes. | |
588 | 0 | |a Print version record. | |
520 | |a The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics. | ||
650 | 0 | |a Stochastic processes. |0 http://id.loc.gov/authorities/subjects/sh85128181 | |
650 | 0 | |a Quantum groups. |0 http://id.loc.gov/authorities/subjects/sh90005801 | |
650 | 0 | |a Noncommutative differential geometry. |0 http://id.loc.gov/authorities/subjects/sh97004788 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 2 | |a Stochastic Processes |0 https://id.nlm.nih.gov/mesh/D013269 | |
650 | 2 | |a Quantum Theory |0 https://id.nlm.nih.gov/mesh/D011789 | |
650 | 6 | |a Processus stochastiques. | |
650 | 6 | |a Groupes quantiques. | |
650 | 6 | |a Géométrie différentielle non commutative. | |
650 | 6 | |a Théorie quantique. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Stochastic Processes. |2 bisacsh | |
650 | 7 | |a Noncommutative differential geometry |2 fast | |
650 | 7 | |a Quantum groups |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Stochastic processes |2 fast | |
700 | 1 | |a Goswami, Debashish. |0 http://id.loc.gov/authorities/names/n2006078380 | |
776 | 0 | 8 | |i Print version: |a Sinha, Kalyan B. |t Quantum stochastic processes and noncommutative geometry. |d Cambridge ; New York : Cambridge University Press, 2007 |z 9780521834506 |z 0521834503 |w (DLC) 2006034088 |w (OCoLC)73742639 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 169. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=185828 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10159187 | ||
938 | |a EBSCOhost |b EBSC |n 185828 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 75034 | ||
938 | |a Ingram |b INGR |n 9780521834506 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn166273342 |
---|---|
_version_ | 1816881652420313088 |
adam_text | |
any_adam_object | |
author | Sinha, Kalyan B. (Kalyan Bidhan), 1944- |
author2 | Goswami, Debashish |
author2_role | |
author2_variant | d g dg |
author_GND | http://id.loc.gov/authorities/names/n2006078380 |
author_facet | Sinha, Kalyan B. (Kalyan Bidhan), 1944- Goswami, Debashish |
author_role | |
author_sort | Sinha, Kalyan B. 1944- |
author_variant | k b s kb kbs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274 .G67 2007eb |
callnumber-search | QA274 .G67 2007eb |
callnumber-sort | QA 3274 G67 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes. |
ctrlnum | (OCoLC)166273342 |
dewey-full | 519.2/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/3 |
dewey-search | 519.2/3 |
dewey-sort | 3519.2 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04827cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn166273342</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">070823s2007 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OSU</subfield><subfield code="d">DLC</subfield><subfield code="d">IG#</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">E7B</subfield><subfield code="d">AZU</subfield><subfield code="d">COO</subfield><subfield code="d">AU@</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">231754323</subfield><subfield code="a">271789341</subfield><subfield code="a">519762282</subfield><subfield code="a">648130705</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511269974</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511269978</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521834506</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521834503</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511268378</subfield><subfield code="q">(ebook ;</subfield><subfield code="q">ebrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511268373</subfield><subfield code="q">(ebook ;</subfield><subfield code="q">ebrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511618529</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511618522</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)166273342</subfield><subfield code="z">(OCoLC)231754323</subfield><subfield code="z">(OCoLC)271789341</subfield><subfield code="z">(OCoLC)519762282</subfield><subfield code="z">(OCoLC)648130705</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274</subfield><subfield code="b">.G67 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinha, Kalyan B.</subfield><subfield code="q">(Kalyan Bidhan),</subfield><subfield code="d">1944-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjGgFkgy3wTTt7VTKyHMxC</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum stochastic processes and noncommutative geometry /</subfield><subfield code="c">Kalyan B. Sinha, Debashish Goswami.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 290 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">169</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 281-287) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85128181</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh90005801</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Noncommutative differential geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97004788</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Stochastic Processes</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D013269</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Quantum Theory</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D011789</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Processus stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes quantiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle non commutative.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Stochastic Processes.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noncommutative differential geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goswami, Debashish.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2006078380</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sinha, Kalyan B.</subfield><subfield code="t">Quantum stochastic processes and noncommutative geometry.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 2007</subfield><subfield code="z">9780521834506</subfield><subfield code="z">0521834503</subfield><subfield code="w">(DLC) 2006034088</subfield><subfield code="w">(OCoLC)73742639</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">169.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=185828</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10159187</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">185828</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">75034</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Ingram</subfield><subfield code="b">INGR</subfield><subfield code="n">9780521834506</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn166273342 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:16:07Z |
institution | BVB |
isbn | 9780511269974 0511269978 9780521834506 0521834503 0511268378 9780511268373 9780511618529 0511618522 |
language | English |
oclc_num | 166273342 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 290 pages) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Sinha, Kalyan B. (Kalyan Bidhan), 1944- https://id.oclc.org/worldcat/entity/E39PCjGgFkgy3wTTt7VTKyHMxC Quantum stochastic processes and noncommutative geometry / Kalyan B. Sinha, Debashish Goswami. Cambridge ; New York : Cambridge University Press, 2007. 1 online resource (x, 290 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 169 Includes bibliographical references (pages 281-287) and index. Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes. Print version record. The classical theory of stochastic processes has important applications arising from the need to describe irreversible evolutions in classical mechanics; analogously quantum stochastic processes can be used to model the dynamics of irreversible quantum systems. Noncommutative, i.e. quantum, geometry provides a framework in which quantum stochastic structures can be explored. This book is the first to describe how these two mathematical constructions are related. In particular, key ideas of semigroups and complete positivity are combined to yield quantum dynamical semigroups (QDS). Sinha and Goswami also develop a general theory of Evans-Hudson dilation for both bounded and unbounded coefficients. The unique features of the book, including the interaction of QDS and quantum stochastic calculus with noncommutative geometry and a thorough discussion of this calculus with unbounded coefficients, will make it of interest to graduate students and researchers in functional analysis, probability and mathematical physics. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Noncommutative differential geometry. http://id.loc.gov/authorities/subjects/sh97004788 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Processus stochastiques. Groupes quantiques. Géométrie différentielle non commutative. Théorie quantique. MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Noncommutative differential geometry fast Quantum groups fast Quantum theory fast Stochastic processes fast Goswami, Debashish. http://id.loc.gov/authorities/names/n2006078380 Print version: Sinha, Kalyan B. Quantum stochastic processes and noncommutative geometry. Cambridge ; New York : Cambridge University Press, 2007 9780521834506 0521834503 (DLC) 2006034088 (OCoLC)73742639 Cambridge tracts in mathematics ; 169. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=185828 Volltext |
spellingShingle | Sinha, Kalyan B. (Kalyan Bidhan), 1944- Quantum stochastic processes and noncommutative geometry / Cambridge tracts in mathematics ; Introduction -- Preliminaries -- Quantum dynamical semigroups -- Hilbert modules -- Quantum stochastic calculus with bounded coefficients -- Dilation of quantum dynamical semigroups with bounded generator -- Quantum stochastic calculus with unbounded coefficients -- Dilation of quantum dynamical semigroups with unbounded generator -- Noncommutative geometry and quantum stochastic processes. Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Noncommutative differential geometry. http://id.loc.gov/authorities/subjects/sh97004788 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Processus stochastiques. Groupes quantiques. Géométrie différentielle non commutative. Théorie quantique. MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Noncommutative differential geometry fast Quantum groups fast Quantum theory fast Stochastic processes fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85128181 http://id.loc.gov/authorities/subjects/sh90005801 http://id.loc.gov/authorities/subjects/sh97004788 http://id.loc.gov/authorities/subjects/sh85109469 https://id.nlm.nih.gov/mesh/D013269 https://id.nlm.nih.gov/mesh/D011789 |
title | Quantum stochastic processes and noncommutative geometry / |
title_auth | Quantum stochastic processes and noncommutative geometry / |
title_exact_search | Quantum stochastic processes and noncommutative geometry / |
title_full | Quantum stochastic processes and noncommutative geometry / Kalyan B. Sinha, Debashish Goswami. |
title_fullStr | Quantum stochastic processes and noncommutative geometry / Kalyan B. Sinha, Debashish Goswami. |
title_full_unstemmed | Quantum stochastic processes and noncommutative geometry / Kalyan B. Sinha, Debashish Goswami. |
title_short | Quantum stochastic processes and noncommutative geometry / |
title_sort | quantum stochastic processes and noncommutative geometry |
topic | Stochastic processes. http://id.loc.gov/authorities/subjects/sh85128181 Quantum groups. http://id.loc.gov/authorities/subjects/sh90005801 Noncommutative differential geometry. http://id.loc.gov/authorities/subjects/sh97004788 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Stochastic Processes https://id.nlm.nih.gov/mesh/D013269 Quantum Theory https://id.nlm.nih.gov/mesh/D011789 Processus stochastiques. Groupes quantiques. Géométrie différentielle non commutative. Théorie quantique. MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Noncommutative differential geometry fast Quantum groups fast Quantum theory fast Stochastic processes fast |
topic_facet | Stochastic processes. Quantum groups. Noncommutative differential geometry. Quantum theory. Stochastic Processes Quantum Theory Processus stochastiques. Groupes quantiques. Géométrie différentielle non commutative. Théorie quantique. MATHEMATICS Probability & Statistics Stochastic Processes. Noncommutative differential geometry Quantum groups Quantum theory Stochastic processes |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=185828 |
work_keys_str_mv | AT sinhakalyanb quantumstochasticprocessesandnoncommutativegeometry AT goswamidebashish quantumstochasticprocessesandnoncommutativegeometry |