Phase transition approach to high temperature superconductivity :: universal properties of cuprate superconductors /
The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phe...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : River Edge, NJ :
Imperial College Press ; Distributed by World Scientific Pub. Co.,
©2000.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course. |
Beschreibung: | 1 online resource (x, 432 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 411-426) and index. |
ISBN: | 9781848160132 1848160135 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn827947302 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130218s2000 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d STF |d YDXCP |d OCLCQ |d EBLCP |d DEBSZ |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d VTS |d AU@ |d OCLCO |d UKAHL |d OCLCQ |d K6U |d LEAUB |d OCLCQ |d OCLCO |d OCL |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ |d OCLCO | ||
019 | |a 922951778 |a 1086440599 | ||
020 | |a 9781848160132 |q (electronic bk.) | ||
020 | |a 1848160135 |q (electronic bk.) | ||
020 | |z 1860942415 | ||
020 | |z 9781860942419 | ||
035 | |a (OCoLC)827947302 |z (OCoLC)922951778 |z (OCoLC)1086440599 | ||
050 | 4 | |a QC611.98.H54 |b S36 2000eb | |
072 | 7 | |a TEC |x 039000 |2 bisacsh | |
082 | 7 | |a 537.6236 |2 22 | |
084 | |a UP 2200 |2 rvk | ||
084 | |a PHY 716f |2 stub | ||
084 | |a PHY 713f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Schneider, T. |q (Toni) |1 https://id.oclc.org/worldcat/entity/E39PCjvX6Wt4G8mbRq7qCj9TwP |0 http://id.loc.gov/authorities/names/n82104983 | |
245 | 1 | 0 | |a Phase transition approach to high temperature superconductivity : |b universal properties of cuprate superconductors / |c T. Schneider & J.M. Singer. |
260 | |a London : |b Imperial College Press ; |a River Edge, NJ : |b Distributed by World Scientific Pub. Co., |c ©2000. | ||
300 | |a 1 online resource (x, 432 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 411-426) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams. | |
520 | |a The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course. | ||
650 | 0 | |a High temperature superconductivity. |0 http://id.loc.gov/authorities/subjects/sh88006188 | |
650 | 0 | |a Copper oxide superconductors. |0 http://id.loc.gov/authorities/subjects/sh88004322 | |
650 | 0 | |a Semiconductors. |0 http://id.loc.gov/authorities/subjects/sh85119903 | |
650 | 0 | |a Superconductivity. |0 http://id.loc.gov/authorities/subjects/sh85130584 | |
650 | 2 | |a Semiconductors |0 https://id.nlm.nih.gov/mesh/D012666 | |
650 | 6 | |a Supraconducteurs à base d'oxyde de cuivre. | |
650 | 6 | |a Semi-conducteurs. | |
650 | 6 | |a Supraconductivité. | |
650 | 6 | |a Supraconductivité à hautes températures. | |
650 | 7 | |a semiconductor. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Superconductors & Superconductivity. |2 bisacsh | |
650 | 7 | |a Superconductivity |2 fast | |
650 | 7 | |a Copper oxide superconductors |2 fast | |
650 | 7 | |a High temperature superconductivity |2 fast | |
650 | 7 | |a Semiconductors |2 fast | |
650 | 7 | |a Cuprate |2 gnd |0 http://d-nb.info/gnd/4148399-6 | |
650 | 7 | |a Hochtemperatursupraleiter |2 gnd |0 http://d-nb.info/gnd/4220922-5 | |
650 | 7 | |a Hochtemperatursupraleitung |2 gnd |0 http://d-nb.info/gnd/4200190-0 | |
650 | 7 | |a Kritisches Phänomen |2 gnd |0 http://d-nb.info/gnd/4165788-3 | |
650 | 7 | |a Phasenumwandlung |2 gnd |0 http://d-nb.info/gnd/4132140-6 | |
700 | 1 | |a Singer, J. M. | |
758 | |i has work: |a Phase transition approach to high temperature superconductivity (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4qqyrVt9Jc6VYYy6FdwC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Schneider, T. (Toni). |t Phase transition approach to high temperature superconductivity. |d London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub. Co., ©2000 |z 1860942415 |w (DLC) 2004295078 |w (OCoLC)44737297 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516694 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24682477 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3051022 | ||
938 | |a ebrary |b EBRY |n ebr10699162 | ||
938 | |a EBSCOhost |b EBSC |n 516694 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26007364 | ||
938 | |a YBP Library Services |b YANK |n 9965729 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn827947302 |
---|---|
_version_ | 1816882222349680640 |
adam_text | |
any_adam_object | |
author | Schneider, T. (Toni) |
author2 | Singer, J. M. |
author2_role | |
author2_variant | j m s jm jms |
author_GND | http://id.loc.gov/authorities/names/n82104983 |
author_facet | Schneider, T. (Toni) Singer, J. M. |
author_role | |
author_sort | Schneider, T. |
author_variant | t s ts |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC611 |
callnumber-raw | QC611.98.H54 S36 2000eb |
callnumber-search | QC611.98.H54 S36 2000eb |
callnumber-sort | QC 3611.98 H54 S36 42000EB |
callnumber-subject | QC - Physics |
classification_rvk | UP 2200 |
classification_tum | PHY 716f PHY 713f |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams. |
ctrlnum | (OCoLC)827947302 |
dewey-full | 537.6236 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 537 - Electricity and electronics |
dewey-raw | 537.6236 |
dewey-search | 537.6236 |
dewey-sort | 3537.6236 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07545cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn827947302</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130218s2000 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">STF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">922951778</subfield><subfield code="a">1086440599</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848160132</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848160135</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1860942415</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781860942419</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947302</subfield><subfield code="z">(OCoLC)922951778</subfield><subfield code="z">(OCoLC)1086440599</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC611.98.H54</subfield><subfield code="b">S36 2000eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">537.6236</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 2200</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 716f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 713f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schneider, T.</subfield><subfield code="q">(Toni)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjvX6Wt4G8mbRq7qCj9TwP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82104983</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Phase transition approach to high temperature superconductivity :</subfield><subfield code="b">universal properties of cuprate superconductors /</subfield><subfield code="c">T. Schneider & J.M. Singer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">River Edge, NJ :</subfield><subfield code="b">Distributed by World Scientific Pub. Co.,</subfield><subfield code="c">©2000.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 432 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 411-426) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">High temperature superconductivity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88006188</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Copper oxide superconductors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh88004322</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semiconductors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119903</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Superconductivity.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85130584</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Semiconductors</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D012666</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Supraconducteurs à base d'oxyde de cuivre.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Semi-conducteurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Supraconductivité.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Supraconductivité à hautes températures.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">semiconductor.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Superconductors & Superconductivity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Superconductivity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Copper oxide superconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">High temperature superconductivity</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semiconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cuprate</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4148399-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hochtemperatursupraleiter</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4220922-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hochtemperatursupraleitung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4200190-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kritisches Phänomen</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4165788-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4132140-6</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singer, J. M.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Phase transition approach to high temperature superconductivity (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4qqyrVt9Jc6VYYy6FdwC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Schneider, T. (Toni).</subfield><subfield code="t">Phase transition approach to high temperature superconductivity.</subfield><subfield code="d">London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub. Co., ©2000</subfield><subfield code="z">1860942415</subfield><subfield code="w">(DLC) 2004295078</subfield><subfield code="w">(OCoLC)44737297</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516694</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24682477</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3051022</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10699162</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">516694</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26007364</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9965729</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn827947302 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:11Z |
institution | BVB |
isbn | 9781848160132 1848160135 |
language | English |
oclc_num | 827947302 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 432 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Imperial College Press ; Distributed by World Scientific Pub. Co., |
record_format | marc |
spelling | Schneider, T. (Toni) https://id.oclc.org/worldcat/entity/E39PCjvX6Wt4G8mbRq7qCj9TwP http://id.loc.gov/authorities/names/n82104983 Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / T. Schneider & J.M. Singer. London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub. Co., ©2000. 1 online resource (x, 432 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 411-426) and index. Print version record. 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams. The discovery of superconductivity at 30 K by Bednorz and Müller in 1986 ignited an explosion of interest in high temperature superconductivity. The initial development rapidly evolved into an intensive worldwide research effort - which still persists after more than a decade - to understand the phenomenon of cuprate superconductivity, to search for ways to raise the transition temperature and to produce materials which have the potential for technological applications. During the past decade of research on this subject, significant progress has been made on both the fundamental science and technological application fronts. A great deal of experimental data is now available on the cuprates, and various properties have been well characterized using high quality single crystals and thin films. Despite this enormous research effort, however, the underlying mechanisms responsible for superconductivity in the cuprates are still open to question. This book offers an understanding from the phase transition point of view, surveys and identifies thermal and quantum fluctuation effects, identifies material-independent universal properties and provides constraints for the microscopic description of the various phenomena. The text is presented in a format suitable for use in a graduate level course. High temperature superconductivity. http://id.loc.gov/authorities/subjects/sh88006188 Copper oxide superconductors. http://id.loc.gov/authorities/subjects/sh88004322 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Supraconducteurs à base d'oxyde de cuivre. Semi-conducteurs. Supraconductivité. Supraconductivité à hautes températures. semiconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Superconductivity fast Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast Cuprate gnd http://d-nb.info/gnd/4148399-6 Hochtemperatursupraleiter gnd http://d-nb.info/gnd/4220922-5 Hochtemperatursupraleitung gnd http://d-nb.info/gnd/4200190-0 Kritisches Phänomen gnd http://d-nb.info/gnd/4165788-3 Phasenumwandlung gnd http://d-nb.info/gnd/4132140-6 Singer, J. M. has work: Phase transition approach to high temperature superconductivity (Text) https://id.oclc.org/worldcat/entity/E39PCG4qqyrVt9Jc6VYYy6FdwC https://id.oclc.org/worldcat/ontology/hasWork Print version: Schneider, T. (Toni). Phase transition approach to high temperature superconductivity. London : Imperial College Press ; River Edge, NJ : Distributed by World Scientific Pub. Co., ©2000 1860942415 (DLC) 2004295078 (OCoLC)44737297 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516694 Volltext |
spellingShingle | Schneider, T. (Toni) Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / 1. Introduction. 1.1. Cuprate superconductors. 1.2. Universal critical properties of continuous phase transitions. 1.3. Finite size effect and corrections to scaling -- 2. Ginzburg -- Landau phenomenology. 2.1. London phenomenology. 2.2. Ginzburg -- Landau functional. 2.3. Mean-field treatment. 2.4. Flux quantization. 2.5. London model and first flux penetration field. 2.6. Effective mass anisotropy -- 3. Gaussian thermal fluctuations. 3.1. Gaussian fluctuations around the mean field solution. 3.2. Gaussian order parameter fluctuations. 3.3. Gaussian vector potential fluctuations. 3.4. Relevance of vector potential fluctuations. 3.5. Helicity modulus. 3.6. Effective mass anisotropy. 3.7. Fluctuation induced diamagnetism -- 4. Superfluidity and the n-vector model. 4.1. Ideal Bose gas. 4.2. Charged Bose gas subjected to a magnetic field. 4.3. Weakly interacting Bose gas. 4.4. Hydrodynamic approach. 4.5. The n-vector model -- 5. Universality and scaling theory of classical critical phenomena at finite temperature. 5.1. Static critical phenomena in isotropic systems. 5.2. Superconductors with effective mass anisotropy. 5.3. Dimensional analysis. 5.4. Implications of the universal critical amplitude relations -- 6. Experimental evidence for classical critical behavior. 6.1. Critical behavior close to optimum doping. 6.2. Doping dependence of the critical behavior. 6.3. Evidence for dynamic scaling. 6.4. Vortex glass to vortex fluid transition. 6.5. The (H, T) phase diagram of extreme type II superconductors emerging from Monte Carlo simulations -- 7. Quantum phase transitions. 7.1. Scaling theory of quantum critical phenomena. 7.2. Quantum critical phenomena: conventional superconductors. 7.3. Quantum critical phenomena: cuprate superconductors -- 8. Implications. 8.1. Interlayer tunneling model. 8.2. Symmetry of the order parameter. 8.3. Suppression of the transition temperature due to dimensional crossover and quantum fluctuations. 8.4. Pseudogap features. 8.5. Relationship between low frequency conductivity and zero temperature penetration depth. 8.6. Doping and pressure dependences of critical amplitudes. 8.7. Doping dependence of isotope and pressure coefficients. 8.8. Bose gas approach. 8.9. Effective pair mass. 8.10. Emerging phase diagrams. High temperature superconductivity. http://id.loc.gov/authorities/subjects/sh88006188 Copper oxide superconductors. http://id.loc.gov/authorities/subjects/sh88004322 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Supraconducteurs à base d'oxyde de cuivre. Semi-conducteurs. Supraconductivité. Supraconductivité à hautes températures. semiconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Superconductivity fast Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast Cuprate gnd http://d-nb.info/gnd/4148399-6 Hochtemperatursupraleiter gnd http://d-nb.info/gnd/4220922-5 Hochtemperatursupraleitung gnd http://d-nb.info/gnd/4200190-0 Kritisches Phänomen gnd http://d-nb.info/gnd/4165788-3 Phasenumwandlung gnd http://d-nb.info/gnd/4132140-6 |
subject_GND | http://id.loc.gov/authorities/subjects/sh88006188 http://id.loc.gov/authorities/subjects/sh88004322 http://id.loc.gov/authorities/subjects/sh85119903 http://id.loc.gov/authorities/subjects/sh85130584 https://id.nlm.nih.gov/mesh/D012666 http://d-nb.info/gnd/4148399-6 http://d-nb.info/gnd/4220922-5 http://d-nb.info/gnd/4200190-0 http://d-nb.info/gnd/4165788-3 http://d-nb.info/gnd/4132140-6 |
title | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / |
title_auth | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / |
title_exact_search | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / |
title_full | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / T. Schneider & J.M. Singer. |
title_fullStr | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / T. Schneider & J.M. Singer. |
title_full_unstemmed | Phase transition approach to high temperature superconductivity : universal properties of cuprate superconductors / T. Schneider & J.M. Singer. |
title_short | Phase transition approach to high temperature superconductivity : |
title_sort | phase transition approach to high temperature superconductivity universal properties of cuprate superconductors |
title_sub | universal properties of cuprate superconductors / |
topic | High temperature superconductivity. http://id.loc.gov/authorities/subjects/sh88006188 Copper oxide superconductors. http://id.loc.gov/authorities/subjects/sh88004322 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Superconductivity. http://id.loc.gov/authorities/subjects/sh85130584 Semiconductors https://id.nlm.nih.gov/mesh/D012666 Supraconducteurs à base d'oxyde de cuivre. Semi-conducteurs. Supraconductivité. Supraconductivité à hautes températures. semiconductor. aat TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. bisacsh Superconductivity fast Copper oxide superconductors fast High temperature superconductivity fast Semiconductors fast Cuprate gnd http://d-nb.info/gnd/4148399-6 Hochtemperatursupraleiter gnd http://d-nb.info/gnd/4220922-5 Hochtemperatursupraleitung gnd http://d-nb.info/gnd/4200190-0 Kritisches Phänomen gnd http://d-nb.info/gnd/4165788-3 Phasenumwandlung gnd http://d-nb.info/gnd/4132140-6 |
topic_facet | High temperature superconductivity. Copper oxide superconductors. Semiconductors. Superconductivity. Semiconductors Supraconducteurs à base d'oxyde de cuivre. Semi-conducteurs. Supraconductivité. Supraconductivité à hautes températures. semiconductor. TECHNOLOGY & ENGINEERING Superconductors & Superconductivity. Superconductivity Copper oxide superconductors High temperature superconductivity Cuprate Hochtemperatursupraleiter Hochtemperatursupraleitung Kritisches Phänomen Phasenumwandlung |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516694 |
work_keys_str_mv | AT schneidert phasetransitionapproachtohightemperaturesuperconductivityuniversalpropertiesofcupratesuperconductors AT singerjm phasetransitionapproachtohightemperaturesuperconductivityuniversalpropertiesofcupratesuperconductors |