An efficient isogeometric boundary element framework enabling interactive simulation:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Hamburg
2019
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xiii, 136 Seiten Illustrationen, Diagramme 21 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV047190731 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 210311s2019 gw a||| m||| 00||| eng d | ||
015 | |a 19,H11 |2 dnb | ||
016 | 7 | |a 1192401816 |2 DE-101 | |
020 | |c Broschur | ||
035 | |a (OCoLC)1136812967 | ||
035 | |a (DE-599)DNB1192401816 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-83 | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Schwarz, Jakob |d 1983- |e Verfasser |0 (DE-588)1191839885 |4 aut | |
245 | 1 | 0 | |a An efficient isogeometric boundary element framework enabling interactive simulation |c von Jakob Schwarz |
264 | 1 | |a Hamburg |c 2019 | |
300 | |a xiii, 136 Seiten |b Illustrationen, Diagramme |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Hamburg |d 2019 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1192401816/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032595931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-032595931 |
Datensatz im Suchindex
_version_ | 1804182289218797568 |
---|---|
adam_text | CONTENTS
LIST
OF
FIGURES
VII
LIST
OF
TABLES
XIII
1
INTRODUCTION
1
1.1
MOTIVATION
..................................................................................................................
1
1.2
OUTLINE
........................................................................................................................
3
2
PHYSICAL
BACKGROUND
5
2.1
PARTIAL
DIFFERENTIAL
EQUATIONS
...............................................................................
5
2.2
SOBOLEV
SPACES
........................................................................................................
7
2.3
BOUNDARY
CONDITIONS
...............................................................................................
9
2.4
FUNDAMENTAL
SOLUTION
............................................................................................
10
2.5
GREEN
*
S
IDENTITIES
.....................................................................................................
12
2.6
OPERATORS
..................................................................................................................
13
3
DISCRETIZATION
17
3.1
GEOMETRY
..................................................................................................................
17
3.1.1
TYPES
OF
GEOMETRY
REPRESENTATION
.........................................................
17
3.1.2
T-SPLINE
FORMAT
AND
BEZIER
PATCHES
.........................................................
21
3.2
APPROXIMATING
THE
SOLUTION
..................................................................................
23
3.2.1
ISOPARAMETRIC
ELEMENTS
...............................................................................
23
3.2.2
INTEGRATION
..................................................................................................
23
3.2.3
NYSTROM
DISCRETIZATION
...............................................................................
25
4
NUMERICAL
INTEGRATION
29
4.1
SINGULAR
INTEGRALS
.....................................................................................................
29
4.1.1
TRIANGULATION
...............................................................................................
30
4.1.2
GUIGGIANI
*
S
METHOD
.....................................................................................
33
4.1.3
RONG
*
S
MAPPINGS
........................................................................................
34
4.2
NEARLY
SINGULAR
INTEGRALS
........................................................................................
37
4.2.1
BASIC
IMPLEMENTATION
..................................................................................
38
4.2.2
SPECIALIZED
QUADRATURE
...............................................................................
46
III
5
ACCELERATOR
STRUCTURES
53
5.1
SOLVER
........................................................................................................................
53
5.2
OPERATOR
SPLITTING
..................................................................................................
55
5.3
FAST
MULTIPOLE
METHOD
............................................................................................
56
5.4
PRECORRECTED
FAST
FOURIER
TRANSFORM
..................................................................
57
5.5
PRECONDITIONING
........................................................................................................
58
6
FREQUENCY
DOMAIN
63
6.1
FOURIER
AND
LAPLACE
TRANSFORM
............................................................................
63
6.2
WAVENUMBER
DECOUPLING
........................................................................................
65
7
IMPLEMENTATION
SPECIFICS
69
7.1
BASIC
STRUCTURE
........................................................................................................
69
7.2
PARALELLIZATION
AND
VECTORIZATION
............................................................................
71
7.3
USABILITY
.....................................................................................................................
72
7.3.1
FRAMEWORK
HANDLING
..................................................................................
73
7.3.2
INTERACTIVITY
..................................................................................................
73
8
VALIDATION
77
8.1
LAPLACE
UNIT
SPHERE
...............................................................................................
77
8.2
INTERNAL
POTENTIAL
FLOW
IN
A
THIN
PLATE
...............................................................
83
8.3
SPHERICAL
VOID
IN
AN
INFINITE
ELASTIC
MEDIUM
......................................................
84
8.4
RIGID
INCLUSION
IN
AN
INFINITE
ELASTIC
MEDIUM
.......................................................
89
8.5
ACOUSTIC
PLANE
WAVE
SCATTERING
BY
AN
IMPEDANCE
SPHERE
................................
94
8.6
ACOUSTIC
FREQUENCY
SWEEP
AND
SPURIOUS
MODES
...............................................
96
8.7
FLOATING
HEMISPHERE
...............................................................................................
97
8.8
PARTICLE
INTERACTION
WITH
PFFT
............................................................................
98
9
TIMINGS
101
9.1
NEAR-MATRIX
ASSEMBLY
............................................................................................
101
9.2
PF
FT
PERFORMANCE
..................................................................................................
104
9.3
SIMULATION
EXAMPLES
...............................................................................................
108
9.3.1
TENSILE
TEST
OF
POROUS
ROD
.........................................................................
108
9.3.2
ACOUSTIC
SCATTERING
OF
A
SHARK
..................................................................
110
9.3.3
HEATING
OF
A
PROPELLER
...............................................................................
ILL
9.3.4
TRANSIENT
RESPONSE
OF
A
POROUS
CUBE
TO
A
STEP
LOAD
.........................
113
9.4
INTERACTIVE
SIMULATION
...........................................................................................
115
9.4.1
STRUCTURAL
COMPONENT
DIMENSIONING
......................................................
116
9.4.2
SHIP
HULL
DESIGN
........................................................................................
117
10
CONCLUSIONS
AND
OUTLOOK
119
IV
A
APPENDIX
121
A.L
GREEN
*
S
FUNCTIONS
.......................................................................................................
121
A.
2
PFFT
CONERGENCE
.....................................................................................................
123
BIBLIOGRAPHY
129
V
|
adam_txt |
CONTENTS
LIST
OF
FIGURES
VII
LIST
OF
TABLES
XIII
1
INTRODUCTION
1
1.1
MOTIVATION
.
1
1.2
OUTLINE
.
3
2
PHYSICAL
BACKGROUND
5
2.1
PARTIAL
DIFFERENTIAL
EQUATIONS
.
5
2.2
SOBOLEV
SPACES
.
7
2.3
BOUNDARY
CONDITIONS
.
9
2.4
FUNDAMENTAL
SOLUTION
.
10
2.5
GREEN
*
S
IDENTITIES
.
12
2.6
OPERATORS
.
13
3
DISCRETIZATION
17
3.1
GEOMETRY
.
17
3.1.1
TYPES
OF
GEOMETRY
REPRESENTATION
.
17
3.1.2
T-SPLINE
FORMAT
AND
BEZIER
PATCHES
.
21
3.2
APPROXIMATING
THE
SOLUTION
.
23
3.2.1
ISOPARAMETRIC
ELEMENTS
.
23
3.2.2
INTEGRATION
.
23
3.2.3
NYSTROM
DISCRETIZATION
.
25
4
NUMERICAL
INTEGRATION
29
4.1
SINGULAR
INTEGRALS
.
29
4.1.1
TRIANGULATION
.
30
4.1.2
GUIGGIANI
*
S
METHOD
.
33
4.1.3
RONG
*
S
MAPPINGS
.
34
4.2
NEARLY
SINGULAR
INTEGRALS
.
37
4.2.1
BASIC
IMPLEMENTATION
.
38
4.2.2
SPECIALIZED
QUADRATURE
.
46
III
5
ACCELERATOR
STRUCTURES
53
5.1
SOLVER
.
53
5.2
OPERATOR
SPLITTING
.
55
5.3
FAST
MULTIPOLE
METHOD
.
56
5.4
PRECORRECTED
FAST
FOURIER
TRANSFORM
.
57
5.5
PRECONDITIONING
.
58
6
FREQUENCY
DOMAIN
63
6.1
FOURIER
AND
LAPLACE
TRANSFORM
.
63
6.2
WAVENUMBER
DECOUPLING
.
65
7
IMPLEMENTATION
SPECIFICS
69
7.1
BASIC
STRUCTURE
.
69
7.2
PARALELLIZATION
AND
VECTORIZATION
.
71
7.3
USABILITY
.
72
7.3.1
FRAMEWORK
HANDLING
.
73
7.3.2
INTERACTIVITY
.
73
8
VALIDATION
77
8.1
LAPLACE
UNIT
SPHERE
.
77
8.2
INTERNAL
POTENTIAL
FLOW
IN
A
THIN
PLATE
.
83
8.3
SPHERICAL
VOID
IN
AN
INFINITE
ELASTIC
MEDIUM
.
84
8.4
RIGID
INCLUSION
IN
AN
INFINITE
ELASTIC
MEDIUM
.
89
8.5
ACOUSTIC
PLANE
WAVE
SCATTERING
BY
AN
IMPEDANCE
SPHERE
.
94
8.6
ACOUSTIC
FREQUENCY
SWEEP
AND
SPURIOUS
MODES
.
96
8.7
FLOATING
HEMISPHERE
.
97
8.8
PARTICLE
INTERACTION
WITH
PFFT
.
98
9
TIMINGS
101
9.1
NEAR-MATRIX
ASSEMBLY
.
101
9.2
PF
FT
PERFORMANCE
.
104
9.3
SIMULATION
EXAMPLES
.
108
9.3.1
TENSILE
TEST
OF
POROUS
ROD
.
108
9.3.2
ACOUSTIC
SCATTERING
OF
A
SHARK
.
110
9.3.3
HEATING
OF
A
PROPELLER
.
ILL
9.3.4
TRANSIENT
RESPONSE
OF
A
POROUS
CUBE
TO
A
STEP
LOAD
.
113
9.4
INTERACTIVE
SIMULATION
.
115
9.4.1
STRUCTURAL
COMPONENT
DIMENSIONING
.
116
9.4.2
SHIP
HULL
DESIGN
.
117
10
CONCLUSIONS
AND
OUTLOOK
119
IV
A
APPENDIX
121
A.L
GREEN
*
S
FUNCTIONS
.
121
A.
2
PFFT
CONERGENCE
.
123
BIBLIOGRAPHY
129
V |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schwarz, Jakob 1983- |
author_GND | (DE-588)1191839885 |
author_facet | Schwarz, Jakob 1983- |
author_role | aut |
author_sort | Schwarz, Jakob 1983- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV047190731 |
ctrlnum | (OCoLC)1136812967 (DE-599)DNB1192401816 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01364nam a2200349 c 4500</leader><controlfield tag="001">BV047190731</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">210311s2019 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">19,H11</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1192401816</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="c">Broschur</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1136812967</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1192401816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwarz, Jakob</subfield><subfield code="d">1983-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1191839885</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An efficient isogeometric boundary element framework enabling interactive simulation</subfield><subfield code="c">von Jakob Schwarz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hamburg</subfield><subfield code="c">2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 136 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Hamburg</subfield><subfield code="d">2019</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1192401816/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032595931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-032595931</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV047190731 |
illustrated | Illustrated |
index_date | 2024-07-03T16:47:48Z |
indexdate | 2024-07-10T09:05:11Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-032595931 |
oclc_num | 1136812967 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xiii, 136 Seiten Illustrationen, Diagramme 21 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
record_format | marc |
spelling | Schwarz, Jakob 1983- Verfasser (DE-588)1191839885 aut An efficient isogeometric boundary element framework enabling interactive simulation von Jakob Schwarz Hamburg 2019 xiii, 136 Seiten Illustrationen, Diagramme 21 cm txt rdacontent n rdamedia nc rdacarrier Dissertation Technische Universität Hamburg 2019 (DE-588)4113937-9 Hochschulschrift gnd-content B:DE-101 application/pdf https://d-nb.info/1192401816/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032595931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schwarz, Jakob 1983- An efficient isogeometric boundary element framework enabling interactive simulation |
subject_GND | (DE-588)4113937-9 |
title | An efficient isogeometric boundary element framework enabling interactive simulation |
title_auth | An efficient isogeometric boundary element framework enabling interactive simulation |
title_exact_search | An efficient isogeometric boundary element framework enabling interactive simulation |
title_exact_search_txtP | An efficient isogeometric boundary element framework enabling interactive simulation |
title_full | An efficient isogeometric boundary element framework enabling interactive simulation von Jakob Schwarz |
title_fullStr | An efficient isogeometric boundary element framework enabling interactive simulation von Jakob Schwarz |
title_full_unstemmed | An efficient isogeometric boundary element framework enabling interactive simulation von Jakob Schwarz |
title_short | An efficient isogeometric boundary element framework enabling interactive simulation |
title_sort | an efficient isogeometric boundary element framework enabling interactive simulation |
topic_facet | Hochschulschrift |
url | https://d-nb.info/1192401816/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=032595931&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schwarzjakob anefficientisogeometricboundaryelementframeworkenablinginteractivesimulation |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis