Artificial intelligence for healthcare: interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world
Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 FWS01 FWS02 TUM01 Volltext |
Zusammenfassung: | Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR. |
Beschreibung: | Title from publisher's bibliographic system (viewed on 07 Apr 2022) |
Beschreibung: | 1 Online-Ressource (x, 192 Seiten) |
ISBN: | 9781108872188 |
DOI: | 10.1017/9781108872188 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048240953 | ||
003 | DE-604 | ||
005 | 20221205 | ||
007 | cr|uuu---uuuuu | ||
008 | 220524s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108872188 |c Online |9 978-1-108-87218-8 | ||
024 | 7 | |a 10.1017/9781108872188 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108872188 | ||
035 | |a (OCoLC)1322800222 | ||
035 | |a (DE-599)BVBBV048240953 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-862 |a DE-863 |a DE-91 | ||
082 | 0 | |a 362.10285 | |
245 | 1 | 0 | |a Artificial intelligence for healthcare |b interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |c edited by Sze-chuan Suen, University of Southern California, David Scheinker, Stanford University, Eva Enns, University of Minnesota |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (x, 192 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 07 Apr 2022) | ||
520 | |a Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR. | ||
650 | 4 | |a Medical informatics | |
650 | 4 | |a Medical care / Data processing | |
650 | 4 | |a Artificial intelligence / Medical applications | |
700 | 1 | |a Suen, Sze-chuan |d 1987- |0 (DE-588)1258298937 |4 edt | |
700 | 1 | |a Scheinker, David |d 1982- |0 (DE-588)1258299437 |4 edt | |
700 | 1 | |a Enns, Eva |d 1984- |0 (DE-588)1258299968 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-83673-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108872188 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033621443 | ||
966 | e | |u https://doi.org/10.1017/9781108872188 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108872188 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108872188 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108872188 |l FWS01 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108872188 |l FWS02 |p ZDB-20-CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108872188 |l TUM01 |p ZDB-20-CBO |q TUM_Paketkauf_2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1008347 |
---|---|
_version_ | 1806174693283069952 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Suen, Sze-chuan 1987- Scheinker, David 1982- Enns, Eva 1984- |
author2_role | edt edt edt |
author2_variant | s c s scs d s ds e e ee |
author_GND | (DE-588)1258298937 (DE-588)1258299437 (DE-588)1258299968 |
author_facet | Suen, Sze-chuan 1987- Scheinker, David 1982- Enns, Eva 1984- |
building | Verbundindex |
bvnumber | BV048240953 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108872188 (OCoLC)1322800222 (DE-599)BVBBV048240953 |
dewey-full | 362.10285 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 362 - Social problems and services to groups |
dewey-raw | 362.10285 |
dewey-search | 362.10285 |
dewey-sort | 3362.10285 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Soziologie |
discipline_str_mv | Soziologie |
doi_str_mv | 10.1017/9781108872188 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03333nmm a2200481zc 4500</leader><controlfield tag="001">BV048240953</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220524s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108872188</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-87218-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108872188</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108872188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1322800222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048240953</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">362.10285</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence for healthcare</subfield><subfield code="b">interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world</subfield><subfield code="c">edited by Sze-chuan Suen, University of Southern California, David Scheinker, Stanford University, Eva Enns, University of Minnesota</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 192 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 07 Apr 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Healthcare has recently seen numerous exciting applications of artificial intelligence, industrial engineering, and operations research. This book, designed to be accessible to a diverse audience, provides an overview of interdisciplinary research partnerships that leverage AI, IE, and OR to tackle societal and operational problems in healthcare. The topics are drawn from a wide variety of disciplines, ranging from optimizing the location of AEDs for cardiac arrests to data mining for facilitating patient flow through a hospital. These applications highlight how engineering has contributed to medical knowledge, health system operations, and behavioral health. Chapter authors include medical doctors, policy-makers, social scientists, and engineers. Each chapter begins with a summary of the health care problem and engineering method. In these examples, researchers in public health, medicine, and social science as well as engineers will find a path to start interdisciplinary collaborations in health applications of AI/IE/OR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical informatics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medical care / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence / Medical applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suen, Sze-chuan</subfield><subfield code="d">1987-</subfield><subfield code="0">(DE-588)1258298937</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scheinker, David</subfield><subfield code="d">1982-</subfield><subfield code="0">(DE-588)1258299437</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Enns, Eva</subfield><subfield code="d">1984-</subfield><subfield code="0">(DE-588)1258299968</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-83673-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033621443</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108872188</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048240953 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:54:11Z |
indexdate | 2024-08-01T10:53:35Z |
institution | BVB |
isbn | 9781108872188 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033621443 |
oclc_num | 1322800222 |
open_access_boolean | |
owner | DE-12 DE-92 DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-862 DE-BY-FWS DE-863 DE-BY-FWS DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (x, 192 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Paketkauf_2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spellingShingle | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world Medical informatics Medical care / Data processing Artificial intelligence / Medical applications |
title | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |
title_auth | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |
title_exact_search | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |
title_exact_search_txtP | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |
title_full | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world edited by Sze-chuan Suen, University of Southern California, David Scheinker, Stanford University, Eva Enns, University of Minnesota |
title_fullStr | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world edited by Sze-chuan Suen, University of Southern California, David Scheinker, Stanford University, Eva Enns, University of Minnesota |
title_full_unstemmed | Artificial intelligence for healthcare interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world edited by Sze-chuan Suen, University of Southern California, David Scheinker, Stanford University, Eva Enns, University of Minnesota |
title_short | Artificial intelligence for healthcare |
title_sort | artificial intelligence for healthcare interdisciplinary partnerships for analytics driven improvements in a post covid world |
title_sub | interdisciplinary partnerships for analytics-driven improvements in a Post-COVID world |
topic | Medical informatics Medical care / Data processing Artificial intelligence / Medical applications |
topic_facet | Medical informatics Medical care / Data processing Artificial intelligence / Medical applications |
url | https://doi.org/10.1017/9781108872188 |
work_keys_str_mv | AT suenszechuan artificialintelligenceforhealthcareinterdisciplinarypartnershipsforanalyticsdrivenimprovementsinapostcovidworld AT scheinkerdavid artificialintelligenceforhealthcareinterdisciplinarypartnershipsforanalyticsdrivenimprovementsinapostcovidworld AT ennseva artificialintelligenceforhealthcareinterdisciplinarypartnershipsforanalyticsdrivenimprovementsinapostcovidworld |