Zero inflated models and generalized linear mixed models with R:
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Newburgh
Highland Statistics
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 324 S. Ill., graph. Darst. |
ISBN: | 9780957174108 9780957174115 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV040108752 | ||
003 | DE-604 | ||
005 | 20190918 | ||
007 | t | ||
008 | 120419s2012 ad|| |||| 00||| eng d | ||
020 | |a 9780957174108 |c pbk |9 978-0-9571741-0-8 | ||
020 | |a 9780957174115 |c hbk |9 978-0-9571741-1-5 | ||
035 | |a (OCoLC)793925621 | ||
035 | |a (DE-599)OBVAC08942638 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-824 |a DE-11 |a DE-20 |a DE-188 |a DE-M49 | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a MAT 620f |2 stub | ||
084 | |a DAT 307f |2 stub | ||
100 | 1 | |a Zuur, Alain F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Zero inflated models and generalized linear mixed models with R |c Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno |
264 | 1 | |a Newburgh |b Highland Statistics |c 2012 | |
300 | |a XVIII, 324 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Statistische Analyse |0 (DE-588)4116599-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gemischtes Modell |0 (DE-588)4156565-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Statistische Analyse |0 (DE-588)4116599-8 |D s |
689 | 1 | 1 | |a Gemischtes Modell |0 (DE-588)4156565-4 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Saveliev, Anatoly A. |e Verfasser |4 aut | |
700 | 1 | |a Ieno, Elena N. |e Verfasser |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965154&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-024965154 |
Datensatz im Suchindex
_version_ | 1804149062479380480 |
---|---|
adam_text | IX
Contents
PREFACE
........................................................................................................................................................
V
CONTENTS
....................................................................................................................................................
IX
CONTRIBUTORS
...........................................................................................................................................
XV
1
INTRODUCTION TO BAYESIAN STATISTICS, MCMC TECHNIQUES, AND WINBUGS
........................................1
1.1
Probabilities and
Bayes
Theorem
.............................................................................................................1
1.2
Likelihood functions
................................................................................................................................3
1.3
Conjugate prior distributions
..................................................................................................................6
1.4
MCMC
.....................................................................................................................................................9
1.4.1
Markov Chain
..................................................................................................................................9
1.4.2
Transition rules*
...........................................................................................................................10
1.5
Using WinBUGS
.....................................................................................................................................16
1.6
Summary
...............................................................................................................................................21
2
ZERO INFLATED GLMM APPLIED TO BARN OWL DATA
...............................................................................25
2.1
Introduction
.........................................................................................................................................25
2.1.1
Vocal begging behaviour of nestling barn owls
............................................................................25
2.1.2
Previous analyses of the owl data
.................................................................................................26
2.1.3
Prerequisite knowledge for this chapter
.......................................................................................28
2.2
Importing and coding the data
...............................................................................................................28
2.3
Data exploration
...................................................................................................................................29
2.4
Overdispersion in the
Poisson
GLMM
.....................................................................................................34
2.4.1
Assessing overdispersion using Pearson residuals
........................................................................34
2.4.2
Assessing overdispersion using an observation level random effect term
....................................35
2.4.3
Simulation study demonstrating observation level random effect
...............................................35
2.4.4
A GLMM with observation level random effect
............................................................................40
2.5
WHY ZERO INFLATED MODELS?
....................................................................................................................41
2.6
Implementing
a Poisson
GLM in WinBUGS
..............................................................................................43
2.6.1
Converting vectors to matrices
.....................................................................................................43
2.6.2
Data for WinBUGS.
........................................................................................................................45
2.6.3
Modelling code for WinBUGS
........................................................................................................45
2.6.4
Initialising the chains
....................................................................................................................46
2.6.5
Parameters, thinning rate and length of the chains
.....................................................................47
2.6.6
Starting WinBUGS from within
R
..................................................................................................47
2.6.7
Assessing convergence of the chains
............................................................................................48
2.6.8
Summarising the posterior distributions
.......................................................................................49
2.6.9
Pearson residuals
..........................................................................................................................51
2.6.10
WinBUGS versus GLM results
......................................................................................................53
2.7
Implementing
a Poisson GLMM
in WinBUGS
..........................................................................................54
2.8
Implementing a zero inflated
Poisson GLM
in WinBUGS using artificial data
.........................................56
2.9
Application of ZIP GLMM in WinBUGS using the owl data
.....................................................................62
2.10
USING
DICTO
FIND THE OPTIMAL ZIP GLMM FOR THE OWL DATA
...................................................................64
2.11
zip
gamm
for 1-way nested data
........................................................................................................66
2.12
Whatto present in a paper?
.................................................................................................................66
Contents
3
A
ROADMAP
FOR ANALYSIS OF OVERDISPERSED SANDEEL COUNTS IN SEAL SCAT
....................................67
3.1
sandeel otoliths and seal scat
............................................................................................................... 67
3.2
Data exploration
...................................................................................................................................
68
3.3
GLM with
a Poisson
distribution
............................................................................................................
71
3.4
GLM WITH A NEGATIVE BINOMIAL DISTRIBUTION
.............................................................................................73
3.5
GAM WITH
A POISSON
DISTRIBUTION
...........................................................................................................
75
3.6
GAM WITH A NEGATIVE BINOMIAL DISTRIBUTION
............................................................................................76
3.6.1
Model and
R
code
.........................................................................................................................76
3.6.2
Model validation of the negative binomial GAM
..........................................................................77
3.6.3
Model interpretation
.....................................................................................................................78
3.7
Zero inflated GAM with
a Poisson
distribution
......................................................................................80
3.7.1
True and false zeros
......................................................................................................................81
3.7.2
The ZIP model
................................................................................................................................81
3.7.3
Result for the ZIP GAM
..................................................................................................................83
3.7.4
Result for the ZINB GAM
...............................................................................................................84
3.8
Final remarks
.........................................................................................................................................87
3.9
Discussion
..............................................................................................................................................88
3.10
whatto present in a paper?
.................................................................................................................89
4
GLMM AND ZERO INFLATED
POISSON GLMM
APPLIED TO 2-WAY NESTED MARMOT DATA
......................91
4.1
Introduction
.........................................................................................................................................91
4.2
data exploration and visualisation
........................................................................................................93
4.2.1
Import the data and get a first impression
...................................................................................93
4.2.2
Zero inflation in the response variable
..........................................................................................94
4.2.3
Number of missing values
.............................................................................................................95
4.2.4
Outliers
..........................................................................................................................................96
4.2.5
Collinearity
....................................................................................................................................96
4.2.6
Visualisation of relationships between number of young and the covariates
..............................98
4.3
WHAT MAKES THIS A DIFFICULT ANALYSIS?
...................................................................................................101
4.4
WHICH STATISTICAL TECHNIQUES AND SOFTWARE TO APPLY?
...........................................................................102
4.5
SHORT DESCRIPTION OF THE STATISTICAL METHODOLOGY
................................................................................103
4.5.1
Viewing it (wrongly) as a Gaussian linear mixed effects model
..................................................103
4.5.2
Viewing the data (potentially wrongly) as
a Poisson GLM
or GLMM
.........................................106
4.5.3
Viewing the data (potentially wrong) as a zero inflated
Poisson GLM
.......................................107
4.5.4
Viewing the data (possibly correct) as a 2-way nested ZIP GLMM
.............................................108
4.6
Dealing with
25
covariates in a 2-way nested ZIP GLMM
......................................................................109
4.7
WinBUGS and
R
code for
Poisson GLM,
GLMM, and ZIP models
..........................................................112
4.7.1
WinBUGS code for
a Poisson GLM
..............................................................................................112
4.7.2
WinBUGS code for 1-way and 2-way nested
Poisson
GLMMs
....................................................116
4.7.3
WinBUGS code for ZIP GLM
........................................................................................................121
4.7.4
WinBUGS code for 2-way nested ZIP
Polsson
GLMMs
................................................................126
4.8
Validating the 2-way nested ZIP GLMM
...............................................................................................128
4.9
Interpretation of the 2-way nested ZIP GLMM model
..........................................................................133
4.10
Discussion
.........................................................................................................................................134
4.11
What
то
present in a paper?
...............................................................................................................136
Appendix A: Correlation between observations in GLMMs*
.......................................................................137
A.I Correlations in
a Poisson
GLMM for 1-way nested data*
.............................................................137
A.2 Correlations in
a Poisson GLMM
for 2-way nested data*
.............................................................138
A.3 Correlations in a binomial GLMM for 1-way nested data*
............................................................140
A.4 Correlations in a GLMM binomial model for 2-way nested data*
.................................................142
A.
5
Correlations in a ZIP model for 1-way nested data*
......................................................................144
A.6 Correlations in a ZIP model for 2-way nested data*
......................................................................145
A.7 Non-technical summary of the appendix
.......................................................................................145
A.8 Example of correlations for the 2-way nested ZIP GLMM*
...........................................................146
XI
5
TWO-STAGE
GAMM
APPLIED TO ZERO INFLATED COMMON
MURRE
DENSITY DATA
...............................149
5.1
Introduction
.......................................................................................................................................149
5.2
Sampling
..............................................................................................................................................149
5.3
Covariates
...........................................................................................................................................153
5.4
Data exploration
.................................................................................................................................154
5.4.1
Potential outliers in the bird data
...............................................................................................154
5.4.2
Zero inflation of the bird data
.....................................................................................................154
5.4.3
Outliers in the covariates
............................................................................................................155
5.4.4
Collinearity of the covariates
......................................................................................................156
5.4.5
Visualisation of relationships between birds and covariates
......................................................159
5.4.6
Cruise and transect effects
..........................................................................................................161
5.4.7
Summary of the data exploration
...............................................................................................162
5.5
GAMM
FOR ZERO INFLATED AND CORRELATED DENSITIES
...............................................................................163
5.5.1
Brainstorming
.............................................................................................................................164
5.5.2
Four model selection approaches
...............................................................................................165
5.6
Results of the full model approach
......................................................................................................165
5.6.1
Results of the presence/absence
GAMM
....................................................................................165
5.6.2
More detailed output for the binomial
GAMM
...........................................................................167
5.6.3
Post-hoc testing
..........................................................................................................................168
5.5.4
Validation of the binomial
GAMM
..............................................................................................170
5.5.5
Analysis of the presence-only data using a gamma
GAMM
.......................................................172
5.7
Fitting a Gamma
GAMM
with CAR correlation in WinBUGS**
............................................................173
5.7.1
Fitting a Gamma GLM in WinBUGS**
.........................................................................................174
5.7.2
Fitting a ZIP GAM on the Common
Murre
counts in WinBUGS**
...............................................176
5.7.3
Fitting a ZIP GAM with residual CAR in WinBUGS**
...................................................................180
5.8
Discussion
............................................................................................................................................181
5.9
What
то
present in a paper?
.................................................................................................................182
6
ZERO INFLATED SPATIALLY CORRELATED COASTAL SKATE DATA
.............................................................183
6.1
Introduction
.......................................................................................................................................183
6.2
Importing the data and data coding
.....................................................................................................183
6.3
Data exploration
.................................................................................................................................184
6.3.1
Outliers
........................................................................................................................................184
6.3.2
Collinearity
..................................................................................................................................185
6.3.3
Relationships
...............................................................................................................................187
6.3.4
Geographical position of the sites
...............................................................................................188
6.3.5
Zero inflation in the species data
................................................................................................189
6.3.6
What makes this a difficult analysis?
..........................................................................................190
6.4
Zero inflated GLM applied
то
R.
agassizi data
.......................................................................................191
6.4.1
What is the starting point?
.........................................................................................................191
6.4.2
Poisson
GLM applied to R. agassizi data
.....................................................................................191
6.4.3
NB GLM applied to R. agassizi data
............................................................................................192
6.4.4
Zero inflated
Poisson
GLM applied to R. agassizi data
...............................................................193
6.4.5
Zero inflated negative binomial GLM applied to R. agassizi data
...............................................196
6.4.6
Model validation of the ZIP GLM applied to R. agassizi data
......................................................201
6.5
Zero inflated GLM applied to A. castelnaui data
..................................................................................203
6.6
ADDING SPATIAL CORRELATION TO A GLM MODEL
.........................................................................................206
6.6.1
Who are the neighbours?
............................................................................................................206
6.6.2
Neighbouring sites
......................................................................................................................210
6.6.3
The CAR model*
..........................................................................................................................210
6.6.4
Applying CAR to simulated spatially correlated data
..................................................................212
6.7
Analysis of species
3:
Sympterygia
bonapart»
........................................................................................218
6.7.1
Poisson
or negative binomial distribution?
.................................................................................218
6.7.2
Adding spatial correlation to the zero inflated
Poisson GLM
......................................................218
6.7.3
Stetting up the required matrices for car.proper
........................................................................219
6.7.4
Preparing MCMC code for a ZIP with residual CAR correlation
..................................................222
ХП
Contents
6.7.5
МСМС
results for ZIP with
residual
CAR structure
......................................................................225
6.8
Discussion
............................................................................................................................................229
6.9
whatto present in a paper?
................................................................................................................. 230
7
ZERO
INFLATED
GLMS
WITH
SPATIAL CORRELATION-
ANALYSIS OF
PARROTFISH
ABUNDANCE
...............231
7.1
Introduction
.......................................................................................................................................231
7.2
The data
..............................................................................................................................................232
7.2.1
Surveying
.....................................................................................................................................232
7.2.2
Response variable
.......................................................................................................................234
7.2.3
Covariates
...................................................................................................................................234
7.3
ANALYSIS OF THE ZERO INFLATED DATA IGNORING THE CORRELATION
.................................................................238
7.3.1
Poisson
and NB GLMs
.................................................................................................................238
7.3.2
ZIP and ZINBGLMs
......................................................................................................................239
7.3.3
Model selection for ZINB
.............................................................................................................243
7.3.4
Independence
..............................................................................................................................244
7.3.5
Independence
-
model misspecification
.....................................................................................245
7.3.6
Adding year to the ZINB?
............................................................................................................245
7.3.7
Dive effect on the residuals
.........................................................................................................246
7.3.8
Adjusting the sample variogram for land between transects
.....................................................246
7.3.9
Which model to choose?
.............................................................................................................249
7.4
ZERO INFLATED MODELS WITH A RANDOM INTERCEPT FOR DIVE
.......................................................................250
7.5
ZERO INFLATED MODELS WITH SPATIAL CORRELATION
.....................................................................................250
7.5.1
Adding a residual correlation structure to the ZINB
...................................................................250
7.5.2
ZINB with a residual CAR correlation in
R
...................................................................................251
7.5.3
МСМС
results
..............................................................................................................................253
7.6
Predictions
..........................................................................................................................................254
7.7
Discussion
............................................................................................................................................255
7.8
What
то
write in a paper
......................................................................................................................255
8
ANALYSIS OF ZERO INFLATED CLICK-BEETLE DATA
...................................................................................257
8.1
Introduction
.......................................................................................................................................257
8.2
The setup of the experiment
..................................................................................................................257
8.3
Importing data and coding
..................................................................................................................258
8.4
Data exploration
.................................................................................................................................259
8.4.1
Spatial position of the sites
.........................................................................................................259
8.4.2
Response and explanatory variables
...........................................................................................260
8.4.3
Viewing the data as time series
..................................................................................................261
8.4.4
Spatial and temporal patterns
....................................................................................................262
8.4.5
Big trouble
...................................................................................................................................263
8.4.6
Effects and interactions for the species data
..............................................................................265
8.4.7
Zero inflation
...............................................................................................................................267
8.4.8
Direction
......................................................................................................................................267
8.4.9
Where to go
f
rom
here; zero inflated models?
...........................................................................268
e.S.ZIPGLM
..............................................................................................................................................268
8.6
zip glm without correlation for the species data
...............................................................................269
8.7
results for the female-male data
.......................................................................................................274
8.8
Discussion
............................................................................................................................................276
8.9
Whatto write in a paper?
....................................................................................................................276
9
ZERO INFLATED GAM FOR TEMPORAL CORRELATED SPERM WHALE STRANDINGS TIME SERIES
..............277
9.1
Introduction
.......................................................................................................................................277
9.2
what makes this a difficult analysis?
...................................................................................................277
9.3
Importing and data coding
..................................................................................................................278
9.4
Data exploration
.................................................................................................................................278
9.5
Poisson
GAM with a single smoother in WinBUGS
...............................................................................280
9.5.1
Fitting
a Poisson
GAM using gam from mgcv
.............................................................................280
9.5.2
Fitting the binomial GAM from Pierce
et al.
(2007)....................................................................282
XIII
9.5.3
Knots
...........................................................................................................................................283
9.5.4
Low rank thin plate splines
.........................................................................................................284
9.5.5
Mathematics for low rank thin plate splines
..............................................................................286
9.5.6
Bypassing the mathematics
........................................................................................................288
9.5.7
WinBUGS code for GAM
..............................................................................................................289
9.5.8
Results
.........................................................................................................................................290
9.6
Poisson
GAM with two smoothers in WinBUGS
...................................................................................293
9.7ZERO inflated
Poisson
GAM in WinBUGS
..............................................................................................296
9.7.1
Justification for zero inflated models
..........................................................................................296
9.7.2
Underlying equations for the ZIP GAM
.......................................................................................297
9.7.3
R
code for a ZIP GAM
..................................................................................................................298
9.7.4
Results for the ZIP GAM
..............................................................................................................299
9.7.5
Model validation of the ZIP GAM
................................................................................................301
9.8
Zero inflated
Poisson
GAM with temporal correlation in WinBUGS
....................................................302
9.8.1
CAR residual correlation in the ZIP GAM
.....................................................................................303
9.8.2
Auto-regressive residual correlation in the ZIP GAM
..................................................................306
9.9
Discussion
............................................................................................................................................308
9.10
Whatto write in a paper?
..................................................................................................................308
10
EPILOGUE
..............................................................................................................................................309
10.1
An excessive number of zeros does not mean zero inflation
................................................................309
10.2
do we need false zeros in order to apply mixture models?
..................................................................311
10.3
were the false zeros in our examples really false?
.............................................................................311
10.4
does the algorithm know which zeros are false?
...............................................................................312
REFERENCES
..............................................................................................................................................315
INDEX
........................................................................................................................................................321
|
any_adam_object | 1 |
author | Zuur, Alain F. Saveliev, Anatoly A. Ieno, Elena N. |
author_facet | Zuur, Alain F. Saveliev, Anatoly A. Ieno, Elena N. |
author_role | aut aut aut |
author_sort | Zuur, Alain F. |
author_variant | a f z af afz a a s aa aas e n i en eni |
building | Verbundindex |
bvnumber | BV040108752 |
classification_rvk | ST 250 |
classification_tum | MAT 620f DAT 307f |
ctrlnum | (OCoLC)793925621 (DE-599)OBVAC08942638 |
discipline | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01868nam a2200457 c 4500</leader><controlfield tag="001">BV040108752</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190918 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120419s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780957174108</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-9571741-0-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780957174115</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-9571741-1-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)793925621</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)OBVAC08942638</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-M49</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 307f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zuur, Alain F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zero inflated models and generalized linear mixed models with R</subfield><subfield code="c">Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newburgh</subfield><subfield code="b">Highland Statistics</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 324 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Analyse</subfield><subfield code="0">(DE-588)4116599-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Gemischtes Modell</subfield><subfield code="0">(DE-588)4156565-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saveliev, Anatoly A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ieno, Elena N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965154&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024965154</subfield></datafield></record></collection> |
id | DE-604.BV040108752 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:17:03Z |
institution | BVB |
isbn | 9780957174108 9780957174115 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024965154 |
oclc_num | 793925621 |
open_access_boolean | |
owner | DE-703 DE-824 DE-11 DE-20 DE-188 DE-M49 DE-BY-TUM |
owner_facet | DE-703 DE-824 DE-11 DE-20 DE-188 DE-M49 DE-BY-TUM |
physical | XVIII, 324 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Highland Statistics |
record_format | marc |
spelling | Zuur, Alain F. Verfasser aut Zero inflated models and generalized linear mixed models with R Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno Newburgh Highland Statistics 2012 XVIII, 324 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Statistische Analyse (DE-588)4116599-8 gnd rswk-swf R Programm (DE-588)4705956-4 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Gemischtes Modell (DE-588)4156565-4 gnd rswk-swf Statistik (DE-588)4056995-0 s R Programm (DE-588)4705956-4 s DE-604 Statistische Analyse (DE-588)4116599-8 s Gemischtes Modell (DE-588)4156565-4 s Saveliev, Anatoly A. Verfasser aut Ieno, Elena N. Verfasser aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965154&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Zuur, Alain F. Saveliev, Anatoly A. Ieno, Elena N. Zero inflated models and generalized linear mixed models with R Statistische Analyse (DE-588)4116599-8 gnd R Programm (DE-588)4705956-4 gnd Statistik (DE-588)4056995-0 gnd Gemischtes Modell (DE-588)4156565-4 gnd |
subject_GND | (DE-588)4116599-8 (DE-588)4705956-4 (DE-588)4056995-0 (DE-588)4156565-4 |
title | Zero inflated models and generalized linear mixed models with R |
title_auth | Zero inflated models and generalized linear mixed models with R |
title_exact_search | Zero inflated models and generalized linear mixed models with R |
title_full | Zero inflated models and generalized linear mixed models with R Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno |
title_fullStr | Zero inflated models and generalized linear mixed models with R Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno |
title_full_unstemmed | Zero inflated models and generalized linear mixed models with R Alain F. Zuur ; Anatoly A. Savaliev ; Elena N. Ieno |
title_short | Zero inflated models and generalized linear mixed models with R |
title_sort | zero inflated models and generalized linear mixed models with r |
topic | Statistische Analyse (DE-588)4116599-8 gnd R Programm (DE-588)4705956-4 gnd Statistik (DE-588)4056995-0 gnd Gemischtes Modell (DE-588)4156565-4 gnd |
topic_facet | Statistische Analyse R Programm Statistik Gemischtes Modell |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024965154&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT zuuralainf zeroinflatedmodelsandgeneralizedlinearmixedmodelswithr AT savelievanatolya zeroinflatedmodelsandgeneralizedlinearmixedmodelswithr AT ienoelenan zeroinflatedmodelsandgeneralizedlinearmixedmodelswithr |