Artificial intelligence methods for fault diagnosis in centrifugal pumps:
This important book offers a foundation for use of artificial intelligence (AI) in fault diagnosis and classification for centrifugal pumps. It outlines methods for operators to identify and classify faults that are not easily detectable using traditional techniques like time domain and frequency do...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Melville, New York
AIP Publishing
2022
|
Schlagworte: | |
Online-Zugang: | UBT01 URL des Erstveröffentlichers |
Zusammenfassung: | This important book offers a foundation for use of artificial intelligence (AI) in fault diagnosis and classification for centrifugal pumps. It outlines methods for operators to identify and classify faults that are not easily detectable using traditional techniques like time domain and frequency domain methods. It brings together different AI approaches that are integrated with Wavelet Transform (WT) and Genetic Algorithm (GA) into a single reference-making advanced diagnostic methods accessible to engineers who may not have a computer science background. Covering a wide range of AI applications for mechanical systems, the book: -- Advances readers from description of the problem to application of AI methods for diagnostics -- Outlines ways for operators to identify and classify faults that are not easily detectable using traditional techniques -- Offers new data from a novel experimental rig not previously available Artificial Intelligence Methods for Fault Diagnosis in Centrifugal Pumps is an ideal reference for academics, engineers, and industry professionals working in plant and operations maintenance. Undergraduate and graduate students of artificial intelligence systems will find this an invaluable reference |
Beschreibung: | Technical Background on Centrifugal Pumps |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780735423596 9780735423589 9780735423572 |
DOI: | 10.1063/9780735423596 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049603136 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240308s2022 |||| o||u| ||||||eng d | ||
020 | |a 9780735423596 |c Online |9 978-0-7354-2359-6 | ||
020 | |a 9780735423589 |c ePDF |9 978-0-7354-2358-9 | ||
020 | |a 9780735423572 |c ePub |9 978-0-7354-2357-2 | ||
024 | 7 | |a 10.1063/9780735423596 |2 doi | |
035 | |a (OCoLC)1427323876 | ||
035 | |a (DE-599)BVBBV049603136 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
100 | 1 | |a Saud Al Tobi, Maamar Ali |e Verfasser |4 aut | |
245 | 1 | 0 | |a Artificial intelligence methods for fault diagnosis in centrifugal pumps |c Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu |
264 | 1 | |a Melville, New York |b AIP Publishing |c 2022 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Technical Background on Centrifugal Pumps | ||
520 | 3 | |a This important book offers a foundation for use of artificial intelligence (AI) in fault diagnosis and classification for centrifugal pumps. It outlines methods for operators to identify and classify faults that are not easily detectable using traditional techniques like time domain and frequency domain methods. It brings together different AI approaches that are integrated with Wavelet Transform (WT) and Genetic Algorithm (GA) into a single reference-making advanced diagnostic methods accessible to engineers who may not have a computer science background. Covering a wide range of AI applications for mechanical systems, the book: -- Advances readers from description of the problem to application of AI methods for diagnostics -- Outlines ways for operators to identify and classify faults that are not easily detectable using traditional techniques -- Offers new data from a novel experimental rig not previously available Artificial Intelligence Methods for Fault Diagnosis in Centrifugal Pumps is an ideal reference for academics, engineers, and industry professionals working in plant and operations maintenance. Undergraduate and graduate students of artificial intelligence systems will find this an invaluable reference | |
653 | 0 | |a Artificial intelligence / Geophysical applications | |
653 | 0 | |a Intelligence artificielle / Applications géophysiques | |
653 | 0 | |a TECHNOLOGY & ENGINEERING / Machinery | |
653 | 0 | |a TECHNOLOGY & ENGINEERING / Measurement | |
653 | 0 | |a TECHNOLOGY & ENGINEERING / Materials Science/General | |
653 | 0 | |a Artificial intelligence / Geophysical applications | |
700 | 1 | |a Bevan, Geraint |e Verfasser |4 aut | |
700 | 1 | |a Okedu, Kenneth |e Verfasser |0 (DE-588)122372297X |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-7354-2356-5 |
856 | 4 | 0 | |u https://doi.org/10.1063/9780735423596 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-275-AIPB |a ZDB-275-AIPB_2 | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034947519 | ||
966 | e | |u https://doi.org/10.1063/9780735423596 |l UBT01 |p ZDB-275-AIPB |q ZDB-275-AIPB_2 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186484486438912 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Saud Al Tobi, Maamar Ali Bevan, Geraint Okedu, Kenneth |
author_GND | (DE-588)122372297X |
author_facet | Saud Al Tobi, Maamar Ali Bevan, Geraint Okedu, Kenneth |
author_role | aut aut aut |
author_sort | Saud Al Tobi, Maamar Ali |
author_variant | a t m a s atma atmas g b gb k o ko |
building | Verbundindex |
bvnumber | BV049603136 |
collection | ZDB-275-AIPB ZDB-275-AIPB_2 |
ctrlnum | (OCoLC)1427323876 (DE-599)BVBBV049603136 |
doi_str_mv | 10.1063/9780735423596 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03105nmm a2200457 c 4500</leader><controlfield tag="001">BV049603136</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240308s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780735423596</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-7354-2359-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780735423589</subfield><subfield code="c">ePDF</subfield><subfield code="9">978-0-7354-2358-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780735423572</subfield><subfield code="c">ePub</subfield><subfield code="9">978-0-7354-2357-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1063/9780735423596</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427323876</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049603136</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Saud Al Tobi, Maamar Ali</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence methods for fault diagnosis in centrifugal pumps</subfield><subfield code="c">Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Melville, New York</subfield><subfield code="b">AIP Publishing</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Technical Background on Centrifugal Pumps</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This important book offers a foundation for use of artificial intelligence (AI) in fault diagnosis and classification for centrifugal pumps. It outlines methods for operators to identify and classify faults that are not easily detectable using traditional techniques like time domain and frequency domain methods. It brings together different AI approaches that are integrated with Wavelet Transform (WT) and Genetic Algorithm (GA) into a single reference-making advanced diagnostic methods accessible to engineers who may not have a computer science background. Covering a wide range of AI applications for mechanical systems, the book: -- Advances readers from description of the problem to application of AI methods for diagnostics -- Outlines ways for operators to identify and classify faults that are not easily detectable using traditional techniques -- Offers new data from a novel experimental rig not previously available Artificial Intelligence Methods for Fault Diagnosis in Centrifugal Pumps is an ideal reference for academics, engineers, and industry professionals working in plant and operations maintenance. Undergraduate and graduate students of artificial intelligence systems will find this an invaluable reference</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence / Geophysical applications</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Intelligence artificielle / Applications géophysiques</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY & ENGINEERING / Machinery</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY & ENGINEERING / Measurement</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY & ENGINEERING / Materials Science/General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial intelligence / Geophysical applications</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bevan, Geraint</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Okedu, Kenneth</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122372297X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-7354-2356-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1063/9780735423596</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-275-AIPB</subfield><subfield code="a">ZDB-275-AIPB_2</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034947519</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1063/9780735423596</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-275-AIPB</subfield><subfield code="q">ZDB-275-AIPB_2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049603136 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:35:00Z |
indexdate | 2024-07-10T10:11:52Z |
institution | BVB |
isbn | 9780735423596 9780735423589 9780735423572 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034947519 |
oclc_num | 1427323876 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | 1 Online-Ressource |
psigel | ZDB-275-AIPB ZDB-275-AIPB_2 ZDB-275-AIPB ZDB-275-AIPB_2 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | AIP Publishing |
record_format | marc |
spelling | Saud Al Tobi, Maamar Ali Verfasser aut Artificial intelligence methods for fault diagnosis in centrifugal pumps Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu Melville, New York AIP Publishing 2022 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Technical Background on Centrifugal Pumps This important book offers a foundation for use of artificial intelligence (AI) in fault diagnosis and classification for centrifugal pumps. It outlines methods for operators to identify and classify faults that are not easily detectable using traditional techniques like time domain and frequency domain methods. It brings together different AI approaches that are integrated with Wavelet Transform (WT) and Genetic Algorithm (GA) into a single reference-making advanced diagnostic methods accessible to engineers who may not have a computer science background. Covering a wide range of AI applications for mechanical systems, the book: -- Advances readers from description of the problem to application of AI methods for diagnostics -- Outlines ways for operators to identify and classify faults that are not easily detectable using traditional techniques -- Offers new data from a novel experimental rig not previously available Artificial Intelligence Methods for Fault Diagnosis in Centrifugal Pumps is an ideal reference for academics, engineers, and industry professionals working in plant and operations maintenance. Undergraduate and graduate students of artificial intelligence systems will find this an invaluable reference Artificial intelligence / Geophysical applications Intelligence artificielle / Applications géophysiques TECHNOLOGY & ENGINEERING / Machinery TECHNOLOGY & ENGINEERING / Measurement TECHNOLOGY & ENGINEERING / Materials Science/General Bevan, Geraint Verfasser aut Okedu, Kenneth Verfasser (DE-588)122372297X aut Erscheint auch als Druck-Ausgabe 978-0-7354-2356-5 https://doi.org/10.1063/9780735423596 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Saud Al Tobi, Maamar Ali Bevan, Geraint Okedu, Kenneth Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title | Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title_auth | Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title_exact_search | Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title_exact_search_txtP | Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title_full | Artificial intelligence methods for fault diagnosis in centrifugal pumps Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu |
title_fullStr | Artificial intelligence methods for fault diagnosis in centrifugal pumps Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu |
title_full_unstemmed | Artificial intelligence methods for fault diagnosis in centrifugal pumps Maamar Ali Saud Al Tobi, Geraint Bevan, Kenneth Okedu |
title_short | Artificial intelligence methods for fault diagnosis in centrifugal pumps |
title_sort | artificial intelligence methods for fault diagnosis in centrifugal pumps |
url | https://doi.org/10.1063/9780735423596 |
work_keys_str_mv | AT saudaltobimaamarali artificialintelligencemethodsforfaultdiagnosisincentrifugalpumps AT bevangeraint artificialintelligencemethodsforfaultdiagnosisincentrifugalpumps AT okedukenneth artificialintelligencemethodsforfaultdiagnosisincentrifugalpumps |