A geometric approach to homology theory /:
The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bor...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
©1976.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
18. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory. |
Beschreibung: | Spine title: Homology theory. |
Beschreibung: | 1 online resource (149 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107087101 1107087104 9780511662669 0511662661 1139883674 9781139883672 1107102022 9781107102026 1107093309 9781107093300 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn846494821 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130603s1976 enka ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CAMBR |d IDEBK |d OCLCF |d OCLCQ |d OCLCO |d YDXCP |d OCLCQ |d AGLDB |d XFH |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d K6U |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 841396517 |a 985253557 |a 985373087 |a 994500413 |a 1162426050 |a 1241898342 |a 1242477158 | ||
020 | |a 9781107087101 |q (electronic bk.) | ||
020 | |a 1107087104 |q (electronic bk.) | ||
020 | |a 9780511662669 |q (electronic bk.) | ||
020 | |a 0511662661 |q (electronic bk.) | ||
020 | |a 1139883674 | ||
020 | |a 9781139883672 | ||
020 | |a 1107102022 | ||
020 | |a 9781107102026 | ||
020 | |a 1107093309 | ||
020 | |a 9781107093300 | ||
020 | |z 0521209404 | ||
020 | |z 9780521209403 | ||
035 | |a (OCoLC)846494821 |z (OCoLC)841396517 |z (OCoLC)985253557 |z (OCoLC)985373087 |z (OCoLC)994500413 |z (OCoLC)1162426050 |z (OCoLC)1241898342 |z (OCoLC)1242477158 | ||
050 | 4 | |a QA611 |b .B85 1976eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.23 |2 22 | |
084 | |a 31.61 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 300 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Buoncristiano, S. | |
245 | 1 | 2 | |a A geometric approach to homology theory / |c by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c ©1976. | ||
300 | |a 1 online resource (149 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 18 | |
500 | |a Spine title: Homology theory. | ||
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
520 | |a The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory. | ||
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 0 | |a Cobordism theory. |0 http://id.loc.gov/authorities/subjects/sh85027549 | |
650 | 6 | |a Homologie. | |
650 | 6 | |a Théorie des cobordismes. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Cobordism theory |2 fast | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Homologie |2 gnd |0 http://d-nb.info/gnd/4141951-0 | |
650 | 7 | |a Homologietheorie |2 gnd |0 http://d-nb.info/gnd/4141714-8 | |
650 | 7 | |a Homologia. |2 larpcal | |
700 | 1 | |a Rourke, C. P. |q (Colin Patrick), |d 1943- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJqfFjBhx8mVgphkqwRh73 |0 http://id.loc.gov/authorities/names/n81124709 | |
700 | 1 | |a Sanderson, B. J. |q (Brian Joseph), |d 1939- |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjrgwyDwbFbQRpfKXx7g83 |0 http://id.loc.gov/authorities/names/n81124710 | |
740 | 0 | |a Homology theory. | |
776 | 0 | 8 | |i Print version: |a Buoncristiano, S. |t Geometric approach to homology theory. |d Cambridge [Eng.] ; New York : Cambridge University Press, ©1976 |z 0521209404 |w (DLC) 75022980 |w (OCoLC)2163039 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 18. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569315 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25052294 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385228 | ||
938 | |a EBSCOhost |b EBSC |n 569315 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25780690 | ||
938 | |a YBP Library Services |b YANK |n 10440735 | ||
938 | |a YBP Library Services |b YANK |n 10734736 | ||
938 | |a YBP Library Services |b YANK |n 10737436 | ||
938 | |a YBP Library Services |b YANK |n 10762207 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn846494821 |
---|---|
_version_ | 1816882234032914432 |
adam_text | |
any_adam_object | |
author | Buoncristiano, S. Rourke, C. P. (Colin Patrick), 1943- Sanderson, B. J. (Brian Joseph), 1939- |
author_GND | http://id.loc.gov/authorities/names/n81124709 http://id.loc.gov/authorities/names/n81124710 |
author_facet | Buoncristiano, S. Rourke, C. P. (Colin Patrick), 1943- Sanderson, B. J. (Brian Joseph), 1939- |
author_role | aut aut |
author_sort | Buoncristiano, S. |
author_variant | s b sb c p r cp cpr b j s bj bjs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA611 |
callnumber-raw | QA611 .B85 1976eb |
callnumber-search | QA611 .B85 1976eb |
callnumber-sort | QA 3611 B85 41976EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 300 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)846494821 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04376cam a2200817 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn846494821</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130603s1976 enka ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">XFH</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">841396517</subfield><subfield code="a">985253557</subfield><subfield code="a">985373087</subfield><subfield code="a">994500413</subfield><subfield code="a">1162426050</subfield><subfield code="a">1241898342</subfield><subfield code="a">1242477158</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087101</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087104</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662669</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662661</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139883674</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139883672</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107102022</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107102026</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107093309</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107093300</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521209404</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521209403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)846494821</subfield><subfield code="z">(OCoLC)841396517</subfield><subfield code="z">(OCoLC)985253557</subfield><subfield code="z">(OCoLC)985373087</subfield><subfield code="z">(OCoLC)994500413</subfield><subfield code="z">(OCoLC)1162426050</subfield><subfield code="z">(OCoLC)1241898342</subfield><subfield code="z">(OCoLC)1242477158</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA611</subfield><subfield code="b">.B85 1976eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buoncristiano, S.</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A geometric approach to homology theory /</subfield><subfield code="c">by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1976.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (149 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Spine title: Homology theory.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Cobordism theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85027549</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des cobordismes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cobordism theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4141951-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4141714-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologia.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rourke, C. P.</subfield><subfield code="q">(Colin Patrick),</subfield><subfield code="d">1943-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJqfFjBhx8mVgphkqwRh73</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81124709</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanderson, B. J.</subfield><subfield code="q">(Brian Joseph),</subfield><subfield code="d">1939-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjrgwyDwbFbQRpfKXx7g83</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81124710</subfield></datafield><datafield tag="740" ind1="0" ind2=" "><subfield code="a">Homology theory.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Buoncristiano, S.</subfield><subfield code="t">Geometric approach to homology theory.</subfield><subfield code="d">Cambridge [Eng.] ; New York : Cambridge University Press, ©1976</subfield><subfield code="z">0521209404</subfield><subfield code="w">(DLC) 75022980</subfield><subfield code="w">(OCoLC)2163039</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">18.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569315</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25052294</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385228</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569315</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25780690</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10440735</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734736</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10737436</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762207</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn846494821 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:22Z |
institution | BVB |
isbn | 9781107087101 1107087104 9780511662669 0511662661 1139883674 9781139883672 1107102022 9781107102026 1107093309 9781107093300 |
language | English |
oclc_num | 846494821 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (149 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1976 |
publishDateSearch | 1976 |
publishDateSort | 1976 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Buoncristiano, S. A geometric approach to homology theory / by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson. Cambridge [England] ; New York : Cambridge University Press, ©1976. 1 online resource (149 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 18 Spine title: Homology theory. Includes bibliographical references. Print version record. English. The purpose of these notes is to give a geometrical treatment of generalized homology and cohomology theories. The central idea is that of a 'mock bundle', which is the geometric cocycle of a general cobordism theory, and the main new result is that any homology theory is a generalized bordism theory. The book will interest mathematicians working in both piecewise linear and algebraic topology especially homology theory as it reaches the frontiers of current research in the topic. The book is also suitable for use as a graduate course in homology theory. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Homologie. Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast Homology theory fast Homologie gnd http://d-nb.info/gnd/4141951-0 Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologia. larpcal Rourke, C. P. (Colin Patrick), 1943- author. https://id.oclc.org/worldcat/entity/E39PBJqfFjBhx8mVgphkqwRh73 http://id.loc.gov/authorities/names/n81124709 Sanderson, B. J. (Brian Joseph), 1939- author. https://id.oclc.org/worldcat/entity/E39PCjrgwyDwbFbQRpfKXx7g83 http://id.loc.gov/authorities/names/n81124710 Homology theory. Print version: Buoncristiano, S. Geometric approach to homology theory. Cambridge [Eng.] ; New York : Cambridge University Press, ©1976 0521209404 (DLC) 75022980 (OCoLC)2163039 London Mathematical Society lecture note series ; 18. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569315 Volltext |
spellingShingle | Buoncristiano, S. Rourke, C. P. (Colin Patrick), 1943- Sanderson, B. J. (Brian Joseph), 1939- A geometric approach to homology theory / London Mathematical Society lecture note series ; Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Homologie. Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast Homology theory fast Homologie gnd http://d-nb.info/gnd/4141951-0 Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologia. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85061770 http://id.loc.gov/authorities/subjects/sh85027549 http://d-nb.info/gnd/4141951-0 http://d-nb.info/gnd/4141714-8 |
title | A geometric approach to homology theory / |
title_alt | Homology theory. |
title_auth | A geometric approach to homology theory / |
title_exact_search | A geometric approach to homology theory / |
title_full | A geometric approach to homology theory / by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson. |
title_fullStr | A geometric approach to homology theory / by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson. |
title_full_unstemmed | A geometric approach to homology theory / by S. Buoncristiano, C.P. Rourke, and B.J. Sanderson. |
title_short | A geometric approach to homology theory / |
title_sort | geometric approach to homology theory |
topic | Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Cobordism theory. http://id.loc.gov/authorities/subjects/sh85027549 Homologie. Théorie des cobordismes. MATHEMATICS Topology. bisacsh Cobordism theory fast Homology theory fast Homologie gnd http://d-nb.info/gnd/4141951-0 Homologietheorie gnd http://d-nb.info/gnd/4141714-8 Homologia. larpcal |
topic_facet | Homology theory. Cobordism theory. Homologie. Théorie des cobordismes. MATHEMATICS Topology. Cobordism theory Homology theory Homologie Homologietheorie Homologia. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569315 |
work_keys_str_mv | AT buoncristianos ageometricapproachtohomologytheory AT rourkecp ageometricapproachtohomologytheory AT sandersonbj ageometricapproachtohomologytheory AT buoncristianos geometricapproachtohomologytheory AT rourkecp geometricapproachtohomologytheory AT sandersonbj geometricapproachtohomologytheory |