Admissibility of logical inference rules:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam
Elsevier
1997
|
Schriftenreihe: | Studies in logic and the foundations of mathematics
v. 136 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: & bull; <IT>admissible</IT> or <IT>permissible</IT> inference rules & bull; the derivability of the admissible inference rules & bull; the structural completeness of logics & bull; the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook Includes bibliographical references (pages 603-617) and index |
Beschreibung: | 1 Online-Ressource (617 pages) |
ISBN: | 9780444895059 0444895051 9780080525990 0080525997 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042317272 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150129s1997 |||| o||u| ||||||eng d | ||
020 | |a 9780444895059 |9 978-0-444-89505-9 | ||
020 | |a 0444895051 |9 0-444-89505-1 | ||
020 | |a 9780080525990 |c electronic bk. |9 978-0-08-052599-0 | ||
020 | |a 0080525997 |c electronic bk. |9 0-08-052599-7 | ||
035 | |a (ZDB-33-EBS)ocn162130751 | ||
035 | |a (OCoLC)162130751 | ||
035 | |a (DE-599)BVBBV042317272 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 | ||
082 | 0 | |a 511.3 |2 22 | |
100 | 1 | |a Rybakov, Vladimir V., (Vladimir Vladimir) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Admissibility of logical inference rules |c Vladimir V. Rybakov |
264 | 1 | |a Amsterdam |b Elsevier |c 1997 | |
300 | |a 1 Online-Ressource (617 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Studies in logic and the foundations of mathematics |v v. 136 | |
500 | |a The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: & bull; <IT>admissible</IT> or <IT>permissible</IT> inference rules & bull; the derivability of the admissible inference rules & bull; the structural completeness of logics & bull; the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook | ||
500 | |a Includes bibliographical references (pages 603-617) and index | ||
650 | 4 | |a Inférence (Logique) | |
650 | 4 | |a Logique symbolique et mathématique | |
650 | 7 | |a MATHEMATICS / Infinity |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Logic |2 bisacsh | |
650 | 7 | |a Inference |2 fast | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Logica |2 gtt | |
650 | 7 | |a Modeltheorie |2 gtt | |
650 | 7 | |a Logica matematica |2 larpcal | |
650 | 4 | |a Logik | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Inference | |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Logischer Schluss |0 (DE-588)4139983-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Logischer Schluss |0 (DE-588)4139983-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u http://www.sciencedirect.com/science/book/9780444895059 |x Verlag |3 Volltext |
912 | |a ZDB-33-ESD |a ZDB-33-EBS | ||
940 | 1 | |q FAW_PDA_ESD | |
940 | 1 | |q FLA_PDA_ESD | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027754262 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152913540415488 |
---|---|
any_adam_object | |
author | Rybakov, Vladimir V., (Vladimir Vladimir) |
author_facet | Rybakov, Vladimir V., (Vladimir Vladimir) |
author_role | aut |
author_sort | Rybakov, Vladimir V., (Vladimir Vladimir) |
author_variant | v v v v r vvvv vvvvr |
building | Verbundindex |
bvnumber | BV042317272 |
collection | ZDB-33-ESD ZDB-33-EBS |
ctrlnum | (ZDB-33-EBS)ocn162130751 (OCoLC)162130751 (DE-599)BVBBV042317272 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03514nmm a2200637zcb4500</leader><controlfield tag="001">BV042317272</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150129s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444895059</subfield><subfield code="9">978-0-444-89505-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444895051</subfield><subfield code="9">0-444-89505-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080525990</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-052599-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080525997</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-052599-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-33-EBS)ocn162130751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162130751</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042317272</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rybakov, Vladimir V., (Vladimir Vladimir)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Admissibility of logical inference rules</subfield><subfield code="c">Vladimir V. Rybakov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (617 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Studies in logic and the foundations of mathematics</subfield><subfield code="v">v. 136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: & bull; <IT>admissible</IT> or <IT>permissible</IT> inference rules & bull; the derivability of the admissible inference rules & bull; the structural completeness of logics & bull; the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 603-617) and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inférence (Logique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logique symbolique et mathématique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Infinity</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Logic</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inference</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logica</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modeltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logica matematica</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inference</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Logischer Schluss</subfield><subfield code="0">(DE-588)4139983-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Logischer Schluss</subfield><subfield code="0">(DE-588)4139983-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.sciencedirect.com/science/book/9780444895059</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-33-ESD</subfield><subfield code="a">ZDB-33-EBS</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_ESD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_ESD</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027754262</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042317272 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:18:16Z |
institution | BVB |
isbn | 9780444895059 0444895051 9780080525990 0080525997 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027754262 |
oclc_num | 162130751 |
open_access_boolean | |
owner | DE-1046 |
owner_facet | DE-1046 |
physical | 1 Online-Ressource (617 pages) |
psigel | ZDB-33-ESD ZDB-33-EBS FAW_PDA_ESD FLA_PDA_ESD |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Elsevier |
record_format | marc |
series2 | Studies in logic and the foundations of mathematics |
spelling | Rybakov, Vladimir V., (Vladimir Vladimir) Verfasser aut Admissibility of logical inference rules Vladimir V. Rybakov Amsterdam Elsevier 1997 1 Online-Ressource (617 pages) txt rdacontent c rdamedia cr rdacarrier Studies in logic and the foundations of mathematics v. 136 The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: & bull; <IT>admissible</IT> or <IT>permissible</IT> inference rules & bull; the derivability of the admissible inference rules & bull; the structural completeness of logics & bull; the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook Includes bibliographical references (pages 603-617) and index Inférence (Logique) Logique symbolique et mathématique MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Inference fast Logic, Symbolic and mathematical fast Logica gtt Modeltheorie gtt Logica matematica larpcal Logik Logic, Symbolic and mathematical Inference Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Logischer Schluss (DE-588)4139983-3 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 s 1\p DE-604 Logischer Schluss (DE-588)4139983-3 s 2\p DE-604 http://www.sciencedirect.com/science/book/9780444895059 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rybakov, Vladimir V., (Vladimir Vladimir) Admissibility of logical inference rules Inférence (Logique) Logique symbolique et mathématique MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Inference fast Logic, Symbolic and mathematical fast Logica gtt Modeltheorie gtt Logica matematica larpcal Logik Logic, Symbolic and mathematical Inference Mathematische Logik (DE-588)4037951-6 gnd Logischer Schluss (DE-588)4139983-3 gnd |
subject_GND | (DE-588)4037951-6 (DE-588)4139983-3 |
title | Admissibility of logical inference rules |
title_auth | Admissibility of logical inference rules |
title_exact_search | Admissibility of logical inference rules |
title_full | Admissibility of logical inference rules Vladimir V. Rybakov |
title_fullStr | Admissibility of logical inference rules Vladimir V. Rybakov |
title_full_unstemmed | Admissibility of logical inference rules Vladimir V. Rybakov |
title_short | Admissibility of logical inference rules |
title_sort | admissibility of logical inference rules |
topic | Inférence (Logique) Logique symbolique et mathématique MATHEMATICS / Infinity bisacsh MATHEMATICS / Logic bisacsh Inference fast Logic, Symbolic and mathematical fast Logica gtt Modeltheorie gtt Logica matematica larpcal Logik Logic, Symbolic and mathematical Inference Mathematische Logik (DE-588)4037951-6 gnd Logischer Schluss (DE-588)4139983-3 gnd |
topic_facet | Inférence (Logique) Logique symbolique et mathématique MATHEMATICS / Infinity MATHEMATICS / Logic Inference Logic, Symbolic and mathematical Logica Modeltheorie Logica matematica Logik Mathematische Logik Logischer Schluss |
url | http://www.sciencedirect.com/science/book/9780444895059 |
work_keys_str_mv | AT rybakovvladimirvvladimirvladimir admissibilityoflogicalinferencerules |