Lattice gas hydrodynamics:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2001
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Cambridge nonlinear science series
11 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 289 S. Ill., graph. Darst. |
ISBN: | 0521419441 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV013987708 | ||
003 | DE-604 | ||
005 | 20011121 | ||
007 | t | ||
008 | 011030s2001 ad|| |||| 00||| eng d | ||
020 | |a 0521419441 |9 0-521-41944-1 | ||
035 | |a (OCoLC)44045669 | ||
035 | |a (DE-599)BVBBV013987708 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 | ||
050 | 0 | |a QC157 | |
082 | 0 | |a 532/.05/015118 |2 21 | |
084 | |a UF 4500 |0 (DE-625)145585: |2 rvk | ||
100 | 1 | |a Rivet, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lattice gas hydrodynamics |c J.-P. Rivet and J. P. Boon |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2001 | |
300 | |a XIX, 289 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Cambridge nonlinear science series |v 11 | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Cellular automata |x Mathematical models | |
650 | 4 | |a Hydrodynamics |x Mathematical models | |
650 | 4 | |a Lattice gas |x Mathematical models | |
650 | 0 | 7 | |a Gittergas |0 (DE-588)4240201-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gittergas |0 (DE-588)4240201-3 |D s |
689 | 0 | 1 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Boon, Jean-Pierre |e Verfasser |4 aut | |
830 | 0 | |a Cambridge nonlinear science series |v 11 |w (DE-604)BV004573757 |9 11 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009573419&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-009573419 |
Datensatz im Suchindex
_version_ | 1804128838573096960 |
---|---|
adam_text | LATTICE GAS HYDRODYNAMICS J.-P. RIVET OBSERVATOIRE DE LA COTE D AZUR,
FRANCE AND J. P. BOON UNIVERSITE DE BRUXELLES, BELGIUM CAMBRIDGE
UNIVERSITY PRESS CONTENTS PREFACE XIII CHAPTER 1 BASIC IDEAS 1 1.1 THE
PHYSICIST S POINT OF VIEW 1 1.2 THE MATHEMATICIAN S POINT OF VIEW 2
1.2.1 FINITE AUTOMATA 2 1.2.2 CELLULAR AUTOMATA 3 1.2.3 LATTICE GASES 3
1.3 COMMENTS 5 1.3.1 77JE VELOCITY VECTORS 5 * 1.3.2 SPACE AND TIME 6
1.3.3 THE EXCLUSION PRINCIPLE 6 1.3.4 BRAVAIS LATTICES 7 1.3.5 LOCA/
VERSUS NON-LOCAL COLLISIONS 8 1.3.6 COLLISION-PROPAGATION VERSUS
PROPAGATION-COLLISION 1.3.7 MATHEMATICAL VERSUS PHYSICAL 9 CHAPTER 2
MICRODYNAMICS: GENERAL FORMALISM 10 2.1 BASIC CONCEPTS AND NOTATION 10
2.1.1 THE LATTICE AND THE VELOCITY VECTORS 10 2.1.2 THE BOOLEAN FIELD 12
2.1.3 OBSERVABLES 12 2.1.4 GENERALIZED OBSERVABLES 14 VN VIII CONTENTS
2.2 THE MICRODYNAMIC EQUATION 15 2.2.1 FORMAL EXPRESSION 16 2.2.2 THE
PROPAGATION OPERATOR 16 2.2.3 THE COLLISION OPERATOR 18 2.2.4 ANALYTIC
EXPRESSIONS OF THE MICRODYNAMIC EQUATION 20 2.3 MICROSCOPIC PROPERTIES
OF A LATTICE GAS 20 2.3.1 DETAILED AND SEMI-DETAILED BALANCE 20 2.3.2
DUALITY 21 2.3.3 CONSERVATION LAWS 21 2.3.4 G-INVARIANCE 23 2.3.5
CRYSTALLOGRAPHIC ISOTROPY 26 2.3.6 IRREDUCIBILITY 28 2.4 SPECIAL RULES
29 2.4.1 SOLID IMPERMEABLE OBSTACLES 30 2.4.2 SOURCES AND SINKS OF
OBSERVABLE QUANTITIES 33 2.5 COMMENTS 33 CHAPTER 3 MICRODYNAMICS:
VARIOUS EXAMPLES 34 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.3 3.3.1 3.3.2 3.4
3.4.1 3.4.2 3.5 3.5.1 3.5.2 3.6 3.6.1 3.6.2 3.7 THE HPP MODEL 34 THE
MICRODYNAMICAL EQUATION MICROSCOPIC PROPERTIES 38 THE FHP-1 MODEL 39 THE
MICRODYNAMICAL EQUATION MICROSCOPIC PROPERTIES 42 THE FHP-2 MODEL 44 THE
MICRODYNAMICAL EQUATION MICROSCOPIC PROPERTIES 46 THE FHP-3 MODEL 48 THE
MICRODYNAMICAL EQUATION MICROSCOPIC PROPERTIES 48 36 41 44 48 THE
COLORED FHP MODEL (CFHP) THE MICRODYNAMICAL EQUATION MICROSCOPIC
PROPERTIES 52 THE GBL MODEL 53 THE MICRODYNAMICAL EQUATION MICROSCOPIC
PROPERTIES 56 THREE-DIMENSIONAL MODELS : 52 55 57 50 CONTENTS 3.7.1
MODELS WITH MULTIPLE LINKS 58 3.7.2 MODELS WITH BIASED COLLISIONS 59
3.7.3 THE FCHC MODELS 59 3.7.4 COLLISION RULES 63 3.7.5 THE
MICRODYNAMICAL EQUATION 64 3.7.6 MICROSCOPIC PROPERTIES 65 CHAPTER 4
EQUILIBRIUM STATISTICAL MECHANICS 68 4.1 THE LIOUVILLE DESCRIPTION 68
4.1.1 MACROSTATES 69 4.1.2 ENSEMBLE-AVERAGES 69 4.1.3 THE LATTICE
LIOUVILLE EQUATION 70 4.2 THE BOLTZMANN DESCRIPTION 71 4.2.1 THE
BOLTZMANN APPROXIMATION 71 4.2.2 THE LATTICE BOLTZMANN EQUATION 72 4.3
THE TF-THEOREM 73 4.3.1 SOME BASICS ABOUT COMMUNICATION AND INFORMATION
74 4.3.2 THE H-THEOREM FOR LATTICE GASES 77 4.4 GLOBAL EQUILIBRIUM
MACROSTATES SO 4.4.1 THE LIOUVILLE APPROACH 81 4.4.2 THE LATTICE
BOLTZMANN APPROACH 84 4.4.3 THE VARIATIONAL APPROACH 85 4.5 NATURAL
PARAMETERIZATION OF EQUILIBRIA 86 4.5.1 LOW-SPEED EQUILIBRIA FOR
SINGLE-SPECIES NON-THERMAL MODELS 89 4.5.2 NEARLY EQUALLY DISTRIBUTED
EQUILIBRIA FOR THERMAL MODELS 93 4.6 STATISTICAL THERMODYNAMICS 98 A.I
STATIC CORRELATION FUNCTIONS 105 CHAPTER 5 MACRODYNAMICS: CHAPMAN-ENSKOG
METHOD 109 5.1 LOCAL EQUILIBRIA AND THE HYDRODYNAMIC LIMIT 110 5.2 THE
MULTI-SCALE EXPANSION FOR MACRODYNAMICS 111 5.2.1 THE SCALE SEPARATION
PARAMETER 111 5.2.2 PERTURBED LOCAL EQUILIBRIUM 111 5.2.3 MACROSCOPIC
SPACE AND TIME SCALES 112 5.2.4 THE AVERAGED MICRODYNAMIC EQUATION 114
5.2.5 THE EXPANSION IN POWERS OF E 116 5.3 FIRST ORDER MACRODYNAMICS 118
X CONTENTS 5.3.1 SOLVABILITY CONDITIONS FOR THE FIRST ORDER PROBLEM 118
5.3.2 SOLUTION OF THE FIRST ORDER PROBLEM 121 5.4 SECOND ORDER
MACRODYNAMICS 126 5.4.1 SOLVABILITY CONDITIONS FOR THE SECOND ORDER
PROBLEM 126 5.5 THE MACRODYNAMIC EQUATIONS 127 5.6 TRANSPORT
COEFFICIENTS WITHIN THE BOLTZMANN APPROXIMATION 129 5.7 NON-THERMAL
MODELS 132 5.7.1 FIRST ORDER MACRODYNAMICS 132 5.7.2 SECOND ORDER
MACRODYNAMICS 133 5.7.3 THE MACRODYNAMIC EQUATION 134 5.7.4 THE
TRANSPORT COEFFICIENTS 135 5.8 COMMENTS 135 CHAPTER 6 LINEARIZED
HYDRODYNAMICS 137 6.1 THE LINEARIZED BOLTZMANN EQUATION 138 6.2 SLOW AND
FAST VARIABLES 140 6.3 THE HYDRODYNAMIC LIMIT 144 6.3.1 THE COUPLING
FUNCTION 145 6.3.2 THE MEMORY FUNCTION 145 6.3.3 THE RANDOM FORCE TERM
147 6.3.4 THE LONG-WAVELENGTH, LONG-TIME LIMIT 148 6.4 THE TRANSPORT
MATRIX 150 6.5 COMMENTS 151 CHAPTER 7 HYDRODYNAMIC FLUCTUATIONS 153 7.1
THE DYNAMIC STRUCTURE FACTOR 154 7.2 FLUCTUATION CORRELATIONS 155 7.3
THE HYDRODYNAMIC MODES 157 7.3.1 THE SPECTRAL DECOMPOSITION 157 7.3.2
THE EIGENVALUES 160 7.4 THE HYDRODYNAMIC SPECTRUM 163 7.5 THE EIGENVALUE
SPECTRUM 164 7.5.1 HYDRODYNAMIC REGIME: KTF 1 165 7.5.2 GENERALIZED
HYDRODYNAMIC REGIME: K/{ 1 166 7.5.3 KINETIC REGIME: K/F ^ 1 167 7.6
POWER SPECTRUM 168 7.6.1 HIGH DENSITY 168 CONTENTS 7.6.2 LOW DENSITY 171
7.6.3 DISPERSION EFFECTS 172 7.7 DIFFUSION AND CORRELATIONS 174 1.1.1
THE TWO-SPECIES LATTICE GAS 175 7.7.2 THE HYDRODYNAMIC LIMIT 177 7.7.3
THE POWER SPECTRUM 178 CHAPTER 8 MACRODYNAMICS: PROJECTORS APPROACH 183
8.1 PRELIMINARIES 184 8.2 MULTIPLE SCALES ANALYSIS 188 8.3 THE
HYDRODYNAMIC EQUATIONS 190 8.4 LINEAR RESPONSE AND GREEN-KUBO
COEFFICIENTS 193 8.5 LONG-TIME TAILS 196 CHAPTER 9 HYDRODYNAMIC REGIMES
199 9.1 THE ACOUSTIC LIMIT 200 9.2 THE INCOMPRESSIBLE LIMIT 203 9.3
COMMENTS 205 9.3.1 INVARIANCES 205 9.3.2 FOUR-DIMENSIONAL MODELS 205
9.3.3 LATTICE GASES TO SIMULATE REAL FLUID DYNAMICS 206 CHAPTER 10
LATTICE GAS SIMULATIONS 207 10.1 LATTICE GAS ALGORITHMS ON DEDICATED
MACHINES 208 10.2 LATTICE GAS ALGORITHMS ON GENERAL PURPOSE COMPUTERS
210 10.2.1 CHANNEL-WISE VS. NODE-WISE STORAGE 210 10.2.2 COLLISION
STRATEGIES 213 10.2.3 OBSTACLES 214 10.3 ESSENTIAL FEATURES OF A LATTICE
GAS SIMULATION CODE 215 10.3.1 INITIALIZATION 215 10.3.2 RAW PHYSICAL
DATA EXTRACTION 216 10.3.3 POST-PROCESSING 217 10.4 MEASUREMENT OF BASIC
LATTICE GAS PROPERTIES 219 10.4.1 MEASURING G(P) AND V(P) 220 10.4.2
MEASURING C S (P) AND V (P) 220 10.4.3 AN EXAMPLE: THE FCHC-3 MODEL 221
10.5 EXAMPLES OF LATTICE GAS SIMULATIONS 222 XII CONTENTS 10.5.1 THE
KELVIN-HELMHOLTZ INSTABILITY 222 10.5.2 PARTICLE AGGREGATION 223 10.5.3
TWO-DIMENSIONAL FLOW PAST AN OBSTACLE 225 10.5.4 THREE-DIMENSIONAL FLOW
PAST AN OBSTACLE 227 10.5.5 TWO-DIMENSIONAL FLOW OF A TWO-PHASE FLUID IN
A POROUS MEDIUM 231 CHAPTER 11 GUIDE FOR FURTHER READING 233 11.1 THE
HISTORICAL ROOTS 234 11.1.1 DISCRETE KINETIC THEORY 234 11.1.2 THE
EARLY DAYS 235 11.1.3 CELLULAR AUTOMATA 235 11.2 THREE-DIMENSIONAL
MODELS 236 11.3 THEORETICAL ANALYSES 236 11.3.1 GENERAL LATTICE GAS
THEORY 237 11.3.2 STATISTICAL PHYSICS AND THERMODYNAMICS 237 11.3.3
VIOLATION OF SEMI-DETAILED BALANCE 239 11.3.4 INVARIANTS AND
CONSERVATION LAWS 240 11.3.5 OBSTACLES AND KNUDSEN LAYERS 240 11.4
MODELS WITH PARTICULAR FEATURES 241 11.4.1 FLUID MIXTURES AND COLLOIDS
241 11.4.2 REACTION-DIFFUSION SYSTEMS 241 11.4.3 IMMISCIBLE FLUIDS AND
FREE INTERFACES 242 11.4.4 FLOW IN POROUS MEDIA 243 11.4.5
THERMO-HYDRODYNAMICS 243 11.4.6 ELASTIC WAVES 243 11.4.7 OTHER MODELS
244 11.5 LATTICE BOLTZMANN METHOD 244 11.6 LATTICE BHATNAGAR-GROSS-KROOK
MODEL 246 11.7 NUMERICAL SIMULATIONS AND IMPLEMENTATIONS 246 11.7.1
IMPLEMENTATION ON DEDICATED HARDWARE 246 11.7.2 SIMULATIONS ON GENERAL
PURPOSE COMPUTERS 247 11.8 BOOKS AND REVIEW ARTICLES 248 APPENDIX
MATHEMATICAL DETAILS 250 REFERENCES 275 AUTHOR INDEX 281 SUBJECT INDEX
285
|
any_adam_object | 1 |
author | Rivet, Jean-Pierre Boon, Jean-Pierre |
author_facet | Rivet, Jean-Pierre Boon, Jean-Pierre |
author_role | aut aut |
author_sort | Rivet, Jean-Pierre |
author_variant | j p r jpr j p b jpb |
building | Verbundindex |
bvnumber | BV013987708 |
callnumber-first | Q - Science |
callnumber-label | QC157 |
callnumber-raw | QC157 |
callnumber-search | QC157 |
callnumber-sort | QC 3157 |
callnumber-subject | QC - Physics |
classification_rvk | UF 4500 |
ctrlnum | (OCoLC)44045669 (DE-599)BVBBV013987708 |
dewey-full | 532/.05/015118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 532 - Fluid mechanics |
dewey-raw | 532/.05/015118 |
dewey-search | 532/.05/015118 |
dewey-sort | 3532 15 515118 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01728nam a2200457 cb4500</leader><controlfield tag="001">BV013987708</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20011121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">011030s2001 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521419441</subfield><subfield code="9">0-521-41944-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)44045669</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV013987708</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC157</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">532/.05/015118</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4500</subfield><subfield code="0">(DE-625)145585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rivet, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice gas hydrodynamics</subfield><subfield code="c">J.-P. Rivet and J. P. Boon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 289 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge nonlinear science series</subfield><subfield code="v">11</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cellular automata</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydrodynamics</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice gas</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gittergas</subfield><subfield code="0">(DE-588)4240201-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gittergas</subfield><subfield code="0">(DE-588)4240201-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boon, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge nonlinear science series</subfield><subfield code="v">11</subfield><subfield code="w">(DE-604)BV004573757</subfield><subfield code="9">11</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009573419&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-009573419</subfield></datafield></record></collection> |
id | DE-604.BV013987708 |
illustrated | Illustrated |
indexdate | 2024-07-09T18:55:36Z |
institution | BVB |
isbn | 0521419441 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-009573419 |
oclc_num | 44045669 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XIX, 289 S. Ill., graph. Darst. |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Cambridge Univ. Press |
record_format | marc |
series | Cambridge nonlinear science series |
series2 | Cambridge nonlinear science series |
spelling | Rivet, Jean-Pierre Verfasser aut Lattice gas hydrodynamics J.-P. Rivet and J. P. Boon 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2001 XIX, 289 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Cambridge nonlinear science series 11 Mathematisches Modell Cellular automata Mathematical models Hydrodynamics Mathematical models Lattice gas Mathematical models Gittergas (DE-588)4240201-3 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Gittergas (DE-588)4240201-3 s Hydrodynamik (DE-588)4026302-2 s DE-604 Boon, Jean-Pierre Verfasser aut Cambridge nonlinear science series 11 (DE-604)BV004573757 11 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009573419&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Rivet, Jean-Pierre Boon, Jean-Pierre Lattice gas hydrodynamics Cambridge nonlinear science series Mathematisches Modell Cellular automata Mathematical models Hydrodynamics Mathematical models Lattice gas Mathematical models Gittergas (DE-588)4240201-3 gnd Hydrodynamik (DE-588)4026302-2 gnd |
subject_GND | (DE-588)4240201-3 (DE-588)4026302-2 |
title | Lattice gas hydrodynamics |
title_auth | Lattice gas hydrodynamics |
title_exact_search | Lattice gas hydrodynamics |
title_full | Lattice gas hydrodynamics J.-P. Rivet and J. P. Boon |
title_fullStr | Lattice gas hydrodynamics J.-P. Rivet and J. P. Boon |
title_full_unstemmed | Lattice gas hydrodynamics J.-P. Rivet and J. P. Boon |
title_short | Lattice gas hydrodynamics |
title_sort | lattice gas hydrodynamics |
topic | Mathematisches Modell Cellular automata Mathematical models Hydrodynamics Mathematical models Lattice gas Mathematical models Gittergas (DE-588)4240201-3 gnd Hydrodynamik (DE-588)4026302-2 gnd |
topic_facet | Mathematisches Modell Cellular automata Mathematical models Hydrodynamics Mathematical models Lattice gas Mathematical models Gittergas Hydrodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=009573419&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004573757 |
work_keys_str_mv | AT rivetjeanpierre latticegashydrodynamics AT boonjeanpierre latticegashydrodynamics |