Euler's gem: the polyhedron formula and the birth of topology
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton, N.J.
Princeton University Press
©2008
|
Schlagworte: | |
Online-Zugang: | FAW01 FAW02 Volltext |
Beschreibung: | Includes bibliographical references (pages 295-308) and index Leonhard Euler and his three "great" friends -- What is a polyhedron? -- The five perfect bodies -- The Pythagorean brotherhood and Plato's atomic theory -- Euclid and his elements -- Kepler's polyhedral universe -- Euler's gem -- Platonic solids, gold balls, Fullerenes, and geodesic domes -- Scooped by Descartes? -- Legendre gets it right -- A stroll through Königsberg -- Cauchy's flattened polyhedra -- Planar graphs, geoboards, and brussels sprouts -- It's a colorful world -- New problems and new proofs -- Rubber sheets, hollow doughnuts, and crazy bottles -- Are they the same, or are they different? -- A knotty problem -- Combing the hair on a coconut -- When topology controls geometry -- The topology of curvy surfaces -- Navigating in n dimensions -- Henri Poincaré and the ascendance of topology -- The million-dollar question Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges |
Beschreibung: | 1 Online-Ressource (xii, 317 pages) |
ISBN: | 0691126771 0691154570 1400838568 9780691126777 9780691154572 9781400838561 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV043115308 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 |||| o||u| ||||||eng d | ||
020 | |a 0691126771 |9 0-691-12677-1 | ||
020 | |a 0691154570 |9 0-691-15457-0 | ||
020 | |a 1400838568 |c electronic bk. |9 1-4008-3856-8 | ||
020 | |a 9780691126777 |9 978-0-691-12677-7 | ||
020 | |a 9780691154572 |9 978-0-691-15457-2 | ||
020 | |a 9781400838561 |c electronic bk. |9 978-1-4008-3856-1 | ||
035 | |a (OCoLC)753980256 | ||
035 | |a (DE-599)BVBBV043115308 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 514.09 |2 23 | |
100 | 1 | |a Richeson, David S., (David Scott) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Euler's gem |b the polyhedron formula and the birth of topology |c David S. Richeson |
264 | 1 | |a Princeton, N.J. |b Princeton University Press |c ©2008 | |
300 | |a 1 Online-Ressource (xii, 317 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 295-308) and index | ||
500 | |a Leonhard Euler and his three "great" friends -- What is a polyhedron? -- The five perfect bodies -- The Pythagorean brotherhood and Plato's atomic theory -- Euclid and his elements -- Kepler's polyhedral universe -- Euler's gem -- Platonic solids, gold balls, Fullerenes, and geodesic domes -- Scooped by Descartes? -- Legendre gets it right -- A stroll through Königsberg -- Cauchy's flattened polyhedra -- Planar graphs, geoboards, and brussels sprouts -- It's a colorful world -- New problems and new proofs -- Rubber sheets, hollow doughnuts, and crazy bottles -- Are they the same, or are they different? -- A knotty problem -- Combing the hair on a coconut -- When topology controls geometry -- The topology of curvy surfaces -- Navigating in n dimensions -- Henri Poincaré and the ascendance of topology -- The million-dollar question | ||
500 | |a Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges | ||
650 | 4 | |a Topology / History | |
650 | 4 | |a Polyhedra | |
650 | 7 | |a MATHEMATICS / Topology |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a Poliedros |2 embne | |
650 | 7 | |a Topología / Historia |2 embne | |
650 | 7 | |a Polyhedra |2 fast | |
650 | 7 | |a Topology |2 fast | |
650 | 7 | |a Algebraische Topologie |2 gnd | |
650 | 7 | |a Euler-Poincaré-Charakteristik |2 gnd | |
650 | 7 | |a Polyeder |2 gnd | |
650 | 7 | |a Algebraische Topologie |2 swd | |
650 | 7 | |a Euler-Poincaré-Charakteristik |2 swd | |
650 | 7 | |a Polyeder |2 swd | |
650 | 4 | |a Geschichte | |
650 | 4 | |a Topology |x History | |
650 | 4 | |a Polyhedra | |
650 | 0 | 7 | |a Polyeder |0 (DE-588)4132101-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polyeder |0 (DE-588)4132101-7 |D s |
689 | 0 | 1 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 0 | 2 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-028539499 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313 |l FAW01 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313 |l FAW02 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804175539336904704 |
---|---|
any_adam_object | |
author | Richeson, David S., (David Scott) |
author_facet | Richeson, David S., (David Scott) |
author_role | aut |
author_sort | Richeson, David S., (David Scott) |
author_variant | d s d s r dsds dsdsr |
building | Verbundindex |
bvnumber | BV043115308 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)753980256 (DE-599)BVBBV043115308 |
dewey-full | 514.09 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.09 |
dewey-search | 514.09 |
dewey-sort | 3514.09 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04204nmm a2200709zc 4500</leader><controlfield tag="001">BV043115308</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691126771</subfield><subfield code="9">0-691-12677-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691154570</subfield><subfield code="9">0-691-15457-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400838568</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3856-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691126777</subfield><subfield code="9">978-0-691-12677-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691154572</subfield><subfield code="9">978-0-691-15457-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400838561</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3856-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)753980256</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043115308</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.09</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Richeson, David S., (David Scott)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Euler's gem</subfield><subfield code="b">the polyhedron formula and the birth of topology</subfield><subfield code="c">David S. Richeson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 317 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 295-308) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Leonhard Euler and his three "great" friends -- What is a polyhedron? -- The five perfect bodies -- The Pythagorean brotherhood and Plato's atomic theory -- Euclid and his elements -- Kepler's polyhedral universe -- Euler's gem -- Platonic solids, gold balls, Fullerenes, and geodesic domes -- Scooped by Descartes? -- Legendre gets it right -- A stroll through Königsberg -- Cauchy's flattened polyhedra -- Planar graphs, geoboards, and brussels sprouts -- It's a colorful world -- New problems and new proofs -- Rubber sheets, hollow doughnuts, and crazy bottles -- Are they the same, or are they different? -- A knotty problem -- Combing the hair on a coconut -- When topology controls geometry -- The topology of curvy surfaces -- Navigating in n dimensions -- Henri Poincaré and the ascendance of topology -- The million-dollar question</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology / History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyhedra</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Poliedros</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topología / Historia</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyhedra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topology</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Euler-Poincaré-Charakteristik</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyeder</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Euler-Poincaré-Charakteristik</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Polyeder</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geschichte</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield><subfield code="x">History</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polyhedra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polyeder</subfield><subfield code="0">(DE-588)4132101-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028539499</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043115308 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T07:17:54Z |
institution | BVB |
isbn | 0691126771 0691154570 1400838568 9780691126777 9780691154572 9781400838561 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028539499 |
oclc_num | 753980256 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xii, 317 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press |
record_format | marc |
spelling | Richeson, David S., (David Scott) Verfasser aut Euler's gem the polyhedron formula and the birth of topology David S. Richeson Princeton, N.J. Princeton University Press ©2008 1 Online-Ressource (xii, 317 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 295-308) and index Leonhard Euler and his three "great" friends -- What is a polyhedron? -- The five perfect bodies -- The Pythagorean brotherhood and Plato's atomic theory -- Euclid and his elements -- Kepler's polyhedral universe -- Euler's gem -- Platonic solids, gold balls, Fullerenes, and geodesic domes -- Scooped by Descartes? -- Legendre gets it right -- A stroll through Königsberg -- Cauchy's flattened polyhedra -- Planar graphs, geoboards, and brussels sprouts -- It's a colorful world -- New problems and new proofs -- Rubber sheets, hollow doughnuts, and crazy bottles -- Are they the same, or are they different? -- A knotty problem -- Combing the hair on a coconut -- When topology controls geometry -- The topology of curvy surfaces -- Navigating in n dimensions -- Henri Poincaré and the ascendance of topology -- The million-dollar question Leonhard Euler's polyhedron formula describes the structure of many objects--from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. Euler's Gem tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, Euler's Gem celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges Topology / History Polyhedra MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / General bisacsh Poliedros embne Topología / Historia embne Polyhedra fast Topology fast Algebraische Topologie gnd Euler-Poincaré-Charakteristik gnd Polyeder gnd Algebraische Topologie swd Euler-Poincaré-Charakteristik swd Polyeder swd Geschichte Topology History Polyeder (DE-588)4132101-7 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Polyeder (DE-588)4132101-7 s Topologie (DE-588)4060425-1 s Geschichte (DE-588)4020517-4 s 1\p DE-604 http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Richeson, David S., (David Scott) Euler's gem the polyhedron formula and the birth of topology Topology / History Polyhedra MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / General bisacsh Poliedros embne Topología / Historia embne Polyhedra fast Topology fast Algebraische Topologie gnd Euler-Poincaré-Charakteristik gnd Polyeder gnd Algebraische Topologie swd Euler-Poincaré-Charakteristik swd Polyeder swd Geschichte Topology History Polyeder (DE-588)4132101-7 gnd Topologie (DE-588)4060425-1 gnd Geschichte (DE-588)4020517-4 gnd |
subject_GND | (DE-588)4132101-7 (DE-588)4060425-1 (DE-588)4020517-4 |
title | Euler's gem the polyhedron formula and the birth of topology |
title_auth | Euler's gem the polyhedron formula and the birth of topology |
title_exact_search | Euler's gem the polyhedron formula and the birth of topology |
title_full | Euler's gem the polyhedron formula and the birth of topology David S. Richeson |
title_fullStr | Euler's gem the polyhedron formula and the birth of topology David S. Richeson |
title_full_unstemmed | Euler's gem the polyhedron formula and the birth of topology David S. Richeson |
title_short | Euler's gem |
title_sort | euler s gem the polyhedron formula and the birth of topology |
title_sub | the polyhedron formula and the birth of topology |
topic | Topology / History Polyhedra MATHEMATICS / Topology bisacsh MATHEMATICS / Geometry / General bisacsh Poliedros embne Topología / Historia embne Polyhedra fast Topology fast Algebraische Topologie gnd Euler-Poincaré-Charakteristik gnd Polyeder gnd Algebraische Topologie swd Euler-Poincaré-Charakteristik swd Polyeder swd Geschichte Topology History Polyeder (DE-588)4132101-7 gnd Topologie (DE-588)4060425-1 gnd Geschichte (DE-588)4020517-4 gnd |
topic_facet | Topology / History Polyhedra MATHEMATICS / Topology MATHEMATICS / Geometry / General Poliedros Topología / Historia Topology Algebraische Topologie Euler-Poincaré-Charakteristik Polyeder Geschichte Topology History Topologie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=375313 |
work_keys_str_mv | AT richesondavidsdavidscott eulersgemthepolyhedronformulaandthebirthoftopology |