Advanced mechanics :: from Euler's determinism to Arnold's chaos /
Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evalua...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford, United Kingdom :
Oxford University Press,
2013.
|
Ausgabe: | First edition. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrödinger equation, hydrogen atom) it is time to go back and relearn classical mech. |
Beschreibung: | Includes index. |
Beschreibung: | 1 online resource (180 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191649875 0191649872 9780191775154 0191775150 1299848362 9781299848368 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861529210 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130426s2013 enka ob 001 0 eng d | ||
040 | |a E7B |b eng |e rda |e pn |c E7B |d YDXCP |d N$T |d OCLCF |d UIU |d EBLCP |d DEBSZ |d OCLCQ |d WYU |d OCLCQ |d K6U |d STBDS |d YDX |d IDEBK |d CDX |d COO |d OTZ |d CUS |d OCLCQ |d INARC |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d EZC |d OCLCO | ||
019 | |a 857968364 |a 858763062 |a 873031401 |a 967258751 |a 1034947364 |a 1065369960 | ||
020 | |a 9780191649875 |q (electronic bk.) | ||
020 | |a 0191649872 |q (electronic bk.) | ||
020 | |a 9780191775154 |q (ebook) | ||
020 | |a 0191775150 | ||
020 | |a 1299848362 |q (ebk) | ||
020 | |a 9781299848368 |q (ebk) | ||
020 | |z 9780199670857 | ||
020 | |z 0199670854 | ||
020 | |z 9780199670864 | ||
020 | |z 0199670862 | ||
035 | |a (OCoLC)861529210 |z (OCoLC)857968364 |z (OCoLC)858763062 |z (OCoLC)873031401 |z (OCoLC)967258751 |z (OCoLC)1034947364 |z (OCoLC)1065369960 | ||
037 | |a 516087 |b MIL | ||
050 | 4 | |a QA805 |b .R35 2013eb | |
072 | 7 | |a SCI |x 041000 |2 bisacsh | |
072 | 7 | |a SCI |x 096000 |2 bisacsh | |
082 | 7 | |a 531 | |
049 | |a MAIN | ||
100 | 1 | |a Rajeev, S. G. |q (Sarada G.), |e author. |1 https://id.oclc.org/worldcat/entity/E39PCjwQRVHkFphKvqtBHdK6Dm | |
245 | 1 | 0 | |a Advanced mechanics : |b from Euler's determinism to Arnold's chaos / |c S.G. Rajeev. |
250 | |a First edition. | ||
264 | 1 | |a Oxford, United Kingdom : |b Oxford University Press, |c 2013. | |
300 | |a 1 online resource (180 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Includes index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Contents; List of Figures; 1 The variational principle; 1.1 Euler-Lagrange equations; 1.2 The Variational principle of mechanics; 1.3 Deduction from quantum mechanics*; 2 Conservation laws; 2.1 Generalized momenta; 2.2 Conservation laws; 2.3 Conservation of energy; 2.4 Minimal surface of revolution; 3 The simple pendulum; 3.1 Algebraic formulation; 3.2 Primer on Jacobi functions; 3.3 Elliptic curves*; 3.4 Imaginary time; 3.5 The arithmetic-geometric mean*; 3.6 Doubly periodic functions*; 4 The Kepler problem; 4.1 The orbit of a planet lies on a plane which contains the Sun. | |
505 | 8 | |a 4.2 The line connecting the planet to the Sun sweeps equal areas in equal times4.3 Planets move along elliptical orbits with the Sun at a focus; 4.4 The ratio of the cube of the semi-major axis to the square of the period is the same for all planets; 4.5 The shape of the orbit; 5 The rigid body; 5.1 The moment of inertia; 5.2 Angular momentum; 5.3 Euler's equations; 5.4 Jacobi's solution; 6 Geometric theory of ordinary differential equations; 6.1 Phase space; 6.2 Differential manifolds; 6.3 Vector fields as derivations; 6.4 Fixed points; 7 Hamilton's principle; 7.1 Generalized momenta. | |
505 | 8 | |a 7.2 Poisson brackets7.3 The star product*; 7.4 Canonical transformation; 7.5 Infinitesimal canonical transformations; 7.6 Symmetries and conservation laws; 7.7 Generating function; 8 Geodesics; 8.1 The metric; 8.2 The variational principle; 8.3 The sphere; 8.4 Hyperbolic space; 8.5 Hamiltonian formulation of geodesics; 8.6 Geodesic formulation of Newtonian mechanics*; 8.7 Geodesics in general relativity*; 9 Hamilton-Jacobi theory; 9.1 Conjugate variables; 9.2 The Hamilton-Jacobi equation; 9.3 The Euler problem; 9.4 The classical limit of the Schrödinger equation* | |
505 | 8 | |a 9.5 Hamilton-Jacobi equation in Riemannian manifolds*9.6 Analogy to optics*; 10 Integrable systems; 10.1 The simple harmonic oscillator; 10.2 The general one-dimensional system; 10.3 Bohr-Sommerfeld quantization; 10.4 The Kepler problem; 10.5 The relativistic Kepler problem*; 10.6 Several degrees of freedom; 10.7 The heavy top; 11 The three body problem; 11.1 Preliminaries; 11.2 Scale invariance; 11.3 Jacobi co-ordinates; 11.4 The 1/r[Sup(2)] potential; 11.5 Montgomery's pair of pants; 12 The restricted three body problem; 12.1 The motion of the primaries; 12.2 The Lagrangian. | |
505 | 8 | |a 12.3 A useful identity12.4 Equilibrium points; 12.5 Hill's regions; 12.6 The second derivative of the potential; 12.7 Stability theory; 13 Magnetic fields; 13.1 The equations of motion; 13.2 Hamiltonian formalism; 13.3 Canonical momentum; 13.4 The Lagrangian; 13.5 The magnetic monopole*; 13.6 The Penning trap; 14 Poisson and symplectic manifolds; 14.1 Poisson brackets on the sphere; 14.2 Equations of motion; 14.3 Poisson manifolds; 14.4 Liouville's theorem; 15 Discrete time; 15.1 First order symplectic integrators; 15.2 Second order symplectic integrator; 15.3 Chaos with one degree of freedom. | |
520 | |a Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrödinger equation, hydrogen atom) it is time to go back and relearn classical mech. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Mechanics |v Textbooks. | |
650 | 0 | |a Mechanics. |0 http://id.loc.gov/authorities/subjects/sh85082767 | |
650 | 2 | |a Mechanics |0 https://id.nlm.nih.gov/mesh/D019563 | |
650 | 6 | |a Mécanique. | |
650 | 7 | |a mechanics (physics) |2 aat | |
650 | 7 | |a SCIENCE |x Mechanics |x General. |2 bisacsh | |
650 | 7 | |a SCIENCE |x Mechanics |x Solids. |2 bisacsh | |
650 | 7 | |a Mechanics |2 fast | |
650 | 7 | |a Mechanik |2 gnd |0 http://d-nb.info/gnd/4038168-7 | |
655 | 0 | |a Electronic books. | |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Textbooks |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
758 | |i has work: |a Advanced mechanics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG4KpxVJMY3MxWh8cf4H4q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Rajeev, Sarada. |t Advanced mechanics : from Euler's determinism to Arnold's chaos. |d Oxford, United Kingdom : Oxford University Press, 2013 |h xiii, 163 pages |z 9780199670857 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=638635 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Internet Archive |b INAR |n advancedmechanic0000raje | ||
938 | |a Coutts Information Services |b COUT |n 26148918 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1389058 | ||
938 | |a ebrary |b EBRY |n ebr10756870 | ||
938 | |a EBSCOhost |b EBSC |n 638635 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26148918 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000168910 | ||
938 | |a YBP Library Services |b YANK |n 11140602 | ||
938 | |a YBP Library Services |b YANK |n 11260561 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861529210 |
---|---|
_version_ | 1816882248394211328 |
adam_text | |
any_adam_object | |
author | Rajeev, S. G. (Sarada G.) |
author_facet | Rajeev, S. G. (Sarada G.) |
author_role | aut |
author_sort | Rajeev, S. G. |
author_variant | s g r sg sgr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA805 |
callnumber-raw | QA805 .R35 2013eb |
callnumber-search | QA805 .R35 2013eb |
callnumber-sort | QA 3805 R35 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Contents; List of Figures; 1 The variational principle; 1.1 Euler-Lagrange equations; 1.2 The Variational principle of mechanics; 1.3 Deduction from quantum mechanics*; 2 Conservation laws; 2.1 Generalized momenta; 2.2 Conservation laws; 2.3 Conservation of energy; 2.4 Minimal surface of revolution; 3 The simple pendulum; 3.1 Algebraic formulation; 3.2 Primer on Jacobi functions; 3.3 Elliptic curves*; 3.4 Imaginary time; 3.5 The arithmetic-geometric mean*; 3.6 Doubly periodic functions*; 4 The Kepler problem; 4.1 The orbit of a planet lies on a plane which contains the Sun. 4.2 The line connecting the planet to the Sun sweeps equal areas in equal times4.3 Planets move along elliptical orbits with the Sun at a focus; 4.4 The ratio of the cube of the semi-major axis to the square of the period is the same for all planets; 4.5 The shape of the orbit; 5 The rigid body; 5.1 The moment of inertia; 5.2 Angular momentum; 5.3 Euler's equations; 5.4 Jacobi's solution; 6 Geometric theory of ordinary differential equations; 6.1 Phase space; 6.2 Differential manifolds; 6.3 Vector fields as derivations; 6.4 Fixed points; 7 Hamilton's principle; 7.1 Generalized momenta. 7.2 Poisson brackets7.3 The star product*; 7.4 Canonical transformation; 7.5 Infinitesimal canonical transformations; 7.6 Symmetries and conservation laws; 7.7 Generating function; 8 Geodesics; 8.1 The metric; 8.2 The variational principle; 8.3 The sphere; 8.4 Hyperbolic space; 8.5 Hamiltonian formulation of geodesics; 8.6 Geodesic formulation of Newtonian mechanics*; 8.7 Geodesics in general relativity*; 9 Hamilton-Jacobi theory; 9.1 Conjugate variables; 9.2 The Hamilton-Jacobi equation; 9.3 The Euler problem; 9.4 The classical limit of the Schrödinger equation* 9.5 Hamilton-Jacobi equation in Riemannian manifolds*9.6 Analogy to optics*; 10 Integrable systems; 10.1 The simple harmonic oscillator; 10.2 The general one-dimensional system; 10.3 Bohr-Sommerfeld quantization; 10.4 The Kepler problem; 10.5 The relativistic Kepler problem*; 10.6 Several degrees of freedom; 10.7 The heavy top; 11 The three body problem; 11.1 Preliminaries; 11.2 Scale invariance; 11.3 Jacobi co-ordinates; 11.4 The 1/r[Sup(2)] potential; 11.5 Montgomery's pair of pants; 12 The restricted three body problem; 12.1 The motion of the primaries; 12.2 The Lagrangian. 12.3 A useful identity12.4 Equilibrium points; 12.5 Hill's regions; 12.6 The second derivative of the potential; 12.7 Stability theory; 13 Magnetic fields; 13.1 The equations of motion; 13.2 Hamiltonian formalism; 13.3 Canonical momentum; 13.4 The Lagrangian; 13.5 The magnetic monopole*; 13.6 The Penning trap; 14 Poisson and symplectic manifolds; 14.1 Poisson brackets on the sphere; 14.2 Equations of motion; 14.3 Poisson manifolds; 14.4 Liouville's theorem; 15 Discrete time; 15.1 First order symplectic integrators; 15.2 Second order symplectic integrator; 15.3 Chaos with one degree of freedom. |
ctrlnum | (OCoLC)861529210 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07171cam a2200865 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861529210</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130426s2013 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">UIU</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">STBDS</subfield><subfield code="d">YDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">CDX</subfield><subfield code="d">COO</subfield><subfield code="d">OTZ</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">EZC</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">857968364</subfield><subfield code="a">858763062</subfield><subfield code="a">873031401</subfield><subfield code="a">967258751</subfield><subfield code="a">1034947364</subfield><subfield code="a">1065369960</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191649875</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191649872</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191775154</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191775150</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299848362</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299848368</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199670857</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199670854</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199670864</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199670862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861529210</subfield><subfield code="z">(OCoLC)857968364</subfield><subfield code="z">(OCoLC)858763062</subfield><subfield code="z">(OCoLC)873031401</subfield><subfield code="z">(OCoLC)967258751</subfield><subfield code="z">(OCoLC)1034947364</subfield><subfield code="z">(OCoLC)1065369960</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">516087</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA805</subfield><subfield code="b">.R35 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">041000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">096000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">531</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rajeev, S. G.</subfield><subfield code="q">(Sarada G.),</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjwQRVHkFphKvqtBHdK6Dm</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced mechanics :</subfield><subfield code="b">from Euler's determinism to Arnold's chaos /</subfield><subfield code="c">S.G. Rajeev.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford, United Kingdom :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (180 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; List of Figures; 1 The variational principle; 1.1 Euler-Lagrange equations; 1.2 The Variational principle of mechanics; 1.3 Deduction from quantum mechanics*; 2 Conservation laws; 2.1 Generalized momenta; 2.2 Conservation laws; 2.3 Conservation of energy; 2.4 Minimal surface of revolution; 3 The simple pendulum; 3.1 Algebraic formulation; 3.2 Primer on Jacobi functions; 3.3 Elliptic curves*; 3.4 Imaginary time; 3.5 The arithmetic-geometric mean*; 3.6 Doubly periodic functions*; 4 The Kepler problem; 4.1 The orbit of a planet lies on a plane which contains the Sun.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The line connecting the planet to the Sun sweeps equal areas in equal times4.3 Planets move along elliptical orbits with the Sun at a focus; 4.4 The ratio of the cube of the semi-major axis to the square of the period is the same for all planets; 4.5 The shape of the orbit; 5 The rigid body; 5.1 The moment of inertia; 5.2 Angular momentum; 5.3 Euler's equations; 5.4 Jacobi's solution; 6 Geometric theory of ordinary differential equations; 6.1 Phase space; 6.2 Differential manifolds; 6.3 Vector fields as derivations; 6.4 Fixed points; 7 Hamilton's principle; 7.1 Generalized momenta.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.2 Poisson brackets7.3 The star product*; 7.4 Canonical transformation; 7.5 Infinitesimal canonical transformations; 7.6 Symmetries and conservation laws; 7.7 Generating function; 8 Geodesics; 8.1 The metric; 8.2 The variational principle; 8.3 The sphere; 8.4 Hyperbolic space; 8.5 Hamiltonian formulation of geodesics; 8.6 Geodesic formulation of Newtonian mechanics*; 8.7 Geodesics in general relativity*; 9 Hamilton-Jacobi theory; 9.1 Conjugate variables; 9.2 The Hamilton-Jacobi equation; 9.3 The Euler problem; 9.4 The classical limit of the Schrödinger equation*</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.5 Hamilton-Jacobi equation in Riemannian manifolds*9.6 Analogy to optics*; 10 Integrable systems; 10.1 The simple harmonic oscillator; 10.2 The general one-dimensional system; 10.3 Bohr-Sommerfeld quantization; 10.4 The Kepler problem; 10.5 The relativistic Kepler problem*; 10.6 Several degrees of freedom; 10.7 The heavy top; 11 The three body problem; 11.1 Preliminaries; 11.2 Scale invariance; 11.3 Jacobi co-ordinates; 11.4 The 1/r[Sup(2)] potential; 11.5 Montgomery's pair of pants; 12 The restricted three body problem; 12.1 The motion of the primaries; 12.2 The Lagrangian.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.3 A useful identity12.4 Equilibrium points; 12.5 Hill's regions; 12.6 The second derivative of the potential; 12.7 Stability theory; 13 Magnetic fields; 13.1 The equations of motion; 13.2 Hamiltonian formalism; 13.3 Canonical momentum; 13.4 The Lagrangian; 13.5 The magnetic monopole*; 13.6 The Penning trap; 14 Poisson and symplectic manifolds; 14.1 Poisson brackets on the sphere; 14.2 Equations of motion; 14.3 Poisson manifolds; 14.4 Liouville's theorem; 15 Discrete time; 15.1 First order symplectic integrators; 15.2 Second order symplectic integrator; 15.3 Chaos with one degree of freedom.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrödinger equation, hydrogen atom) it is time to go back and relearn classical mech.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics</subfield><subfield code="v">Textbooks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082767</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Mechanics</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D019563</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">mechanics (physics)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Mechanics</subfield><subfield code="x">Solids.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mechanik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4038168-7</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Textbooks</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Advanced mechanics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG4KpxVJMY3MxWh8cf4H4q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Rajeev, Sarada.</subfield><subfield code="t">Advanced mechanics : from Euler's determinism to Arnold's chaos.</subfield><subfield code="d">Oxford, United Kingdom : Oxford University Press, 2013</subfield><subfield code="h">xiii, 163 pages</subfield><subfield code="z">9780199670857</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=638635</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">advancedmechanic0000raje</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">26148918</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1389058</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10756870</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">638635</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26148918</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000168910</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11140602</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11260561</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. dissertations. aat Textbooks fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | Electronic books. dissertations. Textbooks Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn861529210 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:36Z |
institution | BVB |
isbn | 9780191649875 0191649872 9780191775154 0191775150 1299848362 9781299848368 |
language | English |
oclc_num | 861529210 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (180 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Rajeev, S. G. (Sarada G.), author. https://id.oclc.org/worldcat/entity/E39PCjwQRVHkFphKvqtBHdK6Dm Advanced mechanics : from Euler's determinism to Arnold's chaos / S.G. Rajeev. First edition. Oxford, United Kingdom : Oxford University Press, 2013. 1 online resource (180 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes index. Print version record. Cover; Contents; List of Figures; 1 The variational principle; 1.1 Euler-Lagrange equations; 1.2 The Variational principle of mechanics; 1.3 Deduction from quantum mechanics*; 2 Conservation laws; 2.1 Generalized momenta; 2.2 Conservation laws; 2.3 Conservation of energy; 2.4 Minimal surface of revolution; 3 The simple pendulum; 3.1 Algebraic formulation; 3.2 Primer on Jacobi functions; 3.3 Elliptic curves*; 3.4 Imaginary time; 3.5 The arithmetic-geometric mean*; 3.6 Doubly periodic functions*; 4 The Kepler problem; 4.1 The orbit of a planet lies on a plane which contains the Sun. 4.2 The line connecting the planet to the Sun sweeps equal areas in equal times4.3 Planets move along elliptical orbits with the Sun at a focus; 4.4 The ratio of the cube of the semi-major axis to the square of the period is the same for all planets; 4.5 The shape of the orbit; 5 The rigid body; 5.1 The moment of inertia; 5.2 Angular momentum; 5.3 Euler's equations; 5.4 Jacobi's solution; 6 Geometric theory of ordinary differential equations; 6.1 Phase space; 6.2 Differential manifolds; 6.3 Vector fields as derivations; 6.4 Fixed points; 7 Hamilton's principle; 7.1 Generalized momenta. 7.2 Poisson brackets7.3 The star product*; 7.4 Canonical transformation; 7.5 Infinitesimal canonical transformations; 7.6 Symmetries and conservation laws; 7.7 Generating function; 8 Geodesics; 8.1 The metric; 8.2 The variational principle; 8.3 The sphere; 8.4 Hyperbolic space; 8.5 Hamiltonian formulation of geodesics; 8.6 Geodesic formulation of Newtonian mechanics*; 8.7 Geodesics in general relativity*; 9 Hamilton-Jacobi theory; 9.1 Conjugate variables; 9.2 The Hamilton-Jacobi equation; 9.3 The Euler problem; 9.4 The classical limit of the Schrödinger equation* 9.5 Hamilton-Jacobi equation in Riemannian manifolds*9.6 Analogy to optics*; 10 Integrable systems; 10.1 The simple harmonic oscillator; 10.2 The general one-dimensional system; 10.3 Bohr-Sommerfeld quantization; 10.4 The Kepler problem; 10.5 The relativistic Kepler problem*; 10.6 Several degrees of freedom; 10.7 The heavy top; 11 The three body problem; 11.1 Preliminaries; 11.2 Scale invariance; 11.3 Jacobi co-ordinates; 11.4 The 1/r[Sup(2)] potential; 11.5 Montgomery's pair of pants; 12 The restricted three body problem; 12.1 The motion of the primaries; 12.2 The Lagrangian. 12.3 A useful identity12.4 Equilibrium points; 12.5 Hill's regions; 12.6 The second derivative of the potential; 12.7 Stability theory; 13 Magnetic fields; 13.1 The equations of motion; 13.2 Hamiltonian formalism; 13.3 Canonical momentum; 13.4 The Lagrangian; 13.5 The magnetic monopole*; 13.6 The Penning trap; 14 Poisson and symplectic manifolds; 14.1 Poisson brackets on the sphere; 14.2 Equations of motion; 14.3 Poisson manifolds; 14.4 Liouville's theorem; 15 Discrete time; 15.1 First order symplectic integrators; 15.2 Second order symplectic integrator; 15.3 Chaos with one degree of freedom. Classical Mechanics is the oldest and best understood part of physics. This does not mean that it is cast in marble yet, a museum piece to be admired from a distance. Instead, mechanics continues to be an active area of research by physicists and mathematicians. Every few years, we need to re-evaluate the purpose of learning mechanics and look at old material in the light of modern developments. Once you have learned basic mechanics (Newton's laws, the solution of the Kepler problem) and quantum mechanics (the Schrödinger equation, hydrogen atom) it is time to go back and relearn classical mech. Includes bibliographical references and index. Mechanics Textbooks. Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Mechanics https://id.nlm.nih.gov/mesh/D019563 Mécanique. mechanics (physics) aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Mechanik gnd http://d-nb.info/gnd/4038168-7 Electronic books. dissertations. aat Textbooks fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf has work: Advanced mechanics (Text) https://id.oclc.org/worldcat/entity/E39PCG4KpxVJMY3MxWh8cf4H4q https://id.oclc.org/worldcat/ontology/hasWork Print version: Rajeev, Sarada. Advanced mechanics : from Euler's determinism to Arnold's chaos. Oxford, United Kingdom : Oxford University Press, 2013 xiii, 163 pages 9780199670857 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=638635 Volltext |
spellingShingle | Rajeev, S. G. (Sarada G.) Advanced mechanics : from Euler's determinism to Arnold's chaos / Cover; Contents; List of Figures; 1 The variational principle; 1.1 Euler-Lagrange equations; 1.2 The Variational principle of mechanics; 1.3 Deduction from quantum mechanics*; 2 Conservation laws; 2.1 Generalized momenta; 2.2 Conservation laws; 2.3 Conservation of energy; 2.4 Minimal surface of revolution; 3 The simple pendulum; 3.1 Algebraic formulation; 3.2 Primer on Jacobi functions; 3.3 Elliptic curves*; 3.4 Imaginary time; 3.5 The arithmetic-geometric mean*; 3.6 Doubly periodic functions*; 4 The Kepler problem; 4.1 The orbit of a planet lies on a plane which contains the Sun. 4.2 The line connecting the planet to the Sun sweeps equal areas in equal times4.3 Planets move along elliptical orbits with the Sun at a focus; 4.4 The ratio of the cube of the semi-major axis to the square of the period is the same for all planets; 4.5 The shape of the orbit; 5 The rigid body; 5.1 The moment of inertia; 5.2 Angular momentum; 5.3 Euler's equations; 5.4 Jacobi's solution; 6 Geometric theory of ordinary differential equations; 6.1 Phase space; 6.2 Differential manifolds; 6.3 Vector fields as derivations; 6.4 Fixed points; 7 Hamilton's principle; 7.1 Generalized momenta. 7.2 Poisson brackets7.3 The star product*; 7.4 Canonical transformation; 7.5 Infinitesimal canonical transformations; 7.6 Symmetries and conservation laws; 7.7 Generating function; 8 Geodesics; 8.1 The metric; 8.2 The variational principle; 8.3 The sphere; 8.4 Hyperbolic space; 8.5 Hamiltonian formulation of geodesics; 8.6 Geodesic formulation of Newtonian mechanics*; 8.7 Geodesics in general relativity*; 9 Hamilton-Jacobi theory; 9.1 Conjugate variables; 9.2 The Hamilton-Jacobi equation; 9.3 The Euler problem; 9.4 The classical limit of the Schrödinger equation* 9.5 Hamilton-Jacobi equation in Riemannian manifolds*9.6 Analogy to optics*; 10 Integrable systems; 10.1 The simple harmonic oscillator; 10.2 The general one-dimensional system; 10.3 Bohr-Sommerfeld quantization; 10.4 The Kepler problem; 10.5 The relativistic Kepler problem*; 10.6 Several degrees of freedom; 10.7 The heavy top; 11 The three body problem; 11.1 Preliminaries; 11.2 Scale invariance; 11.3 Jacobi co-ordinates; 11.4 The 1/r[Sup(2)] potential; 11.5 Montgomery's pair of pants; 12 The restricted three body problem; 12.1 The motion of the primaries; 12.2 The Lagrangian. 12.3 A useful identity12.4 Equilibrium points; 12.5 Hill's regions; 12.6 The second derivative of the potential; 12.7 Stability theory; 13 Magnetic fields; 13.1 The equations of motion; 13.2 Hamiltonian formalism; 13.3 Canonical momentum; 13.4 The Lagrangian; 13.5 The magnetic monopole*; 13.6 The Penning trap; 14 Poisson and symplectic manifolds; 14.1 Poisson brackets on the sphere; 14.2 Equations of motion; 14.3 Poisson manifolds; 14.4 Liouville's theorem; 15 Discrete time; 15.1 First order symplectic integrators; 15.2 Second order symplectic integrator; 15.3 Chaos with one degree of freedom. Mechanics Textbooks. Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Mechanics https://id.nlm.nih.gov/mesh/D019563 Mécanique. mechanics (physics) aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Mechanik gnd http://d-nb.info/gnd/4038168-7 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082767 https://id.nlm.nih.gov/mesh/D019563 http://d-nb.info/gnd/4038168-7 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Advanced mechanics : from Euler's determinism to Arnold's chaos / |
title_auth | Advanced mechanics : from Euler's determinism to Arnold's chaos / |
title_exact_search | Advanced mechanics : from Euler's determinism to Arnold's chaos / |
title_full | Advanced mechanics : from Euler's determinism to Arnold's chaos / S.G. Rajeev. |
title_fullStr | Advanced mechanics : from Euler's determinism to Arnold's chaos / S.G. Rajeev. |
title_full_unstemmed | Advanced mechanics : from Euler's determinism to Arnold's chaos / S.G. Rajeev. |
title_short | Advanced mechanics : |
title_sort | advanced mechanics from euler s determinism to arnold s chaos |
title_sub | from Euler's determinism to Arnold's chaos / |
topic | Mechanics Textbooks. Mechanics. http://id.loc.gov/authorities/subjects/sh85082767 Mechanics https://id.nlm.nih.gov/mesh/D019563 Mécanique. mechanics (physics) aat SCIENCE Mechanics General. bisacsh SCIENCE Mechanics Solids. bisacsh Mechanics fast Mechanik gnd http://d-nb.info/gnd/4038168-7 |
topic_facet | Mechanics Textbooks. Mechanics. Mechanics Mécanique. mechanics (physics) SCIENCE Mechanics General. SCIENCE Mechanics Solids. Mechanik Electronic books. dissertations. Textbooks Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=638635 |
work_keys_str_mv | AT rajeevsg advancedmechanicsfromeulersdeterminismtoarnoldschaos |