Partial differential equations :: a unified Hilbert space approach /
This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space se...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
De Gruyter,
©2011.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
55. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. |
Beschreibung: | 1 online resource (xviii, 469 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110250275 3110250276 1283399938 9781283399937 9786613399939 6613399930 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn753970239 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 110921s2011 gw ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d CDX |d IDEBK |d OCLCQ |d DEBSZ |d OCLCQ |d YDXCP |d OCLCQ |d NLGGC |d DEBBG |d EBLCP |d MERUC |d CN3GA |d OCLCF |d OCLCQ |d S3O |d COO |d OCLCQ |d AZK |d LOA |d COCUF |d UIU |d AGLDB |d MOR |d PIFAG |d ZCU |d OCLCQ |d DEGRU |d U3W |d STF |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d VT2 |d AU@ |d OCLCQ |d WYU |d OCLCQ |d TKN |d OCLCQ |d LEAUB |d DKC |d OCLCQ |d UKAHL |d OCLCQ |d VLY |d AJS |d OCLCQ |d OCLCO |d AAA |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
016 | 7 | |a 015848897 |2 Uk | |
019 | |a 743693614 |a 747413854 |a 816881812 |a 961499457 |a 962611017 |a 1058067646 |a 1162379587 | ||
020 | |a 9783110250275 |q (electronic bk.) | ||
020 | |a 3110250276 |q (electronic bk.) | ||
020 | |z 9783110250268 | ||
020 | |z 3110250268 | ||
020 | |a 1283399938 | ||
020 | |a 9781283399937 | ||
020 | |a 9786613399939 | ||
020 | |a 6613399930 | ||
024 | 7 | |a 10.1515/9783110250275 |2 doi | |
035 | |a (OCoLC)753970239 |z (OCoLC)743693614 |z (OCoLC)747413854 |z (OCoLC)816881812 |z (OCoLC)961499457 |z (OCoLC)962611017 |z (OCoLC)1058067646 |z (OCoLC)1162379587 | ||
050 | 4 | |a QA322.4 |b .P53 2011eb | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
082 | 7 | |a 515/.733 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Picard, R. H. |q (Rainer H.) |1 https://id.oclc.org/worldcat/entity/E39PBJv8CcvvrxxHJvhkX9WhpP |0 http://id.loc.gov/authorities/names/n88033139 | |
245 | 1 | 0 | |a Partial differential equations : |b a unified Hilbert space approach / |c Rainer Picard, Des McGhee. |
260 | |a Berlin ; |a New York : |b De Gruyter, |c ©2011. | ||
300 | |a 1 online resource (xviii, 469 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics ; |v 55 | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. | |
520 | |a This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. | ||
546 | |a In English. | ||
650 | 0 | |a Hilbert space. |0 http://id.loc.gov/authorities/subjects/sh85060803 | |
650 | 0 | |a Differential equations, Partial. |0 http://id.loc.gov/authorities/subjects/sh85037912 | |
650 | 4 | |a Differential equations, Partial. | |
650 | 4 | |a Equations. | |
650 | 4 | |a Hilbert space. | |
650 | 6 | |a Espace de Hilbert. | |
650 | 6 | |a Équations aux dérivées partielles. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Differential equations, Partial |2 fast | |
650 | 7 | |a Hilbert space |2 fast | |
700 | 1 | |a McGhee, D. F. | |
758 | |i has work: |a Partial differential equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGtvbTKfkdKGQ3jWFVGTH3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Picard, R.H. (Rainer H.). |t Partial differential equations. |d Berlin ; New York : De Gruyter, ©2011 |z 9783110250268 |w (DLC) 2011004423 |w (OCoLC)705567992 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 55. |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381760 |3 Volltext |
880 | 0 | |6 505-01/(S |a Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations. | |
938 | |a YBP Library Services |b YANK |n 3688161 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 339993 | ||
938 | |a EBSCOhost |b EBSC |n 381760 | ||
938 | |a ebrary |b EBRY |n ebr10485452 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL736995 | ||
938 | |a Coutts Information Services |b COUT |n 20504063 | ||
938 | |a De Gruyter |b DEGR |n 9783110250275 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH25310576 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn753970239 |
---|---|
_version_ | 1816881770538205184 |
adam_text | |
any_adam_object | |
author | Picard, R. H. (Rainer H.) |
author2 | McGhee, D. F. |
author2_role | |
author2_variant | d f m df dfm |
author_GND | http://id.loc.gov/authorities/names/n88033139 |
author_facet | Picard, R. H. (Rainer H.) McGhee, D. F. |
author_role | |
author_sort | Picard, R. H. |
author_variant | r h p rh rhp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.4 .P53 2011eb |
callnumber-search | QA322.4 .P53 2011eb |
callnumber-sort | QA 3322.4 P53 42011EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. |
ctrlnum | (OCoLC)753970239 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05594cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn753970239</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">110921s2011 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NLGGC</subfield><subfield code="d">DEBBG</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">CN3GA</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S3O</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEGRU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AAA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015848897</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">743693614</subfield><subfield code="a">747413854</subfield><subfield code="a">816881812</subfield><subfield code="a">961499457</subfield><subfield code="a">962611017</subfield><subfield code="a">1058067646</subfield><subfield code="a">1162379587</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250275</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250276</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110250268</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110250268</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283399938</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283399937</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613399939</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613399930</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110250275</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)753970239</subfield><subfield code="z">(OCoLC)743693614</subfield><subfield code="z">(OCoLC)747413854</subfield><subfield code="z">(OCoLC)816881812</subfield><subfield code="z">(OCoLC)961499457</subfield><subfield code="z">(OCoLC)962611017</subfield><subfield code="z">(OCoLC)1058067646</subfield><subfield code="z">(OCoLC)1162379587</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA322.4</subfield><subfield code="b">.P53 2011eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Picard, R. H.</subfield><subfield code="q">(Rainer H.)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJv8CcvvrxxHJvhkX9WhpP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88033139</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Partial differential equations :</subfield><subfield code="b">a unified Hilbert space approach /</subfield><subfield code="c">Rainer Picard, Des McGhee.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2011.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 469 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">55</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert space.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060803</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037912</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Equations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hilbert space.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espace de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McGhee, D. F.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Partial differential equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGtvbTKfkdKGQ3jWFVGTH3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Picard, R.H. (Rainer H.).</subfield><subfield code="t">Partial differential equations.</subfield><subfield code="d">Berlin ; New York : De Gruyter, ©2011</subfield><subfield code="z">9783110250268</subfield><subfield code="w">(DLC) 2011004423</subfield><subfield code="w">(OCoLC)705567992</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">55.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381760</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3688161</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">339993</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">381760</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10485452</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL736995</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">20504063</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">De Gruyter</subfield><subfield code="b">DEGR</subfield><subfield code="n">9783110250275</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25310576</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn753970239 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:18:00Z |
institution | BVB |
isbn | 9783110250275 3110250276 1283399938 9781283399937 9786613399939 6613399930 |
language | English |
oclc_num | 753970239 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xviii, 469 pages) |
psigel | ZDB-4-EBA |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics ; |
spelling | Picard, R. H. (Rainer H.) https://id.oclc.org/worldcat/entity/E39PBJv8CcvvrxxHJvhkX9WhpP http://id.loc.gov/authorities/names/n88033139 Partial differential equations : a unified Hilbert space approach / Rainer Picard, Des McGhee. Berlin ; New York : De Gruyter, ©2011. 1 online resource (xviii, 469 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics ; 55 Includes bibliographical references and index. Print version record. 880-01 Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. This book presents a systematic approach to a solution theory for linear partial differential equations developed in a Hilbert space setting based on a Sobolev Lattice structure, a simple extension of the well established notion of a chain (or scale) of Hilbert spaces. Thefocus on a Hilbert space setting is a highly adaptable and suitable approach providing a more transparent framework for presenting the main issues in the development of a solution theory for partial differential equations. This global point of view is takenby focussing on the issues involved in determining the appropriate func. In English. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Differential equations, Partial. Equations. Hilbert space. Espace de Hilbert. Équations aux dérivées partielles. MATHEMATICS Transformations. bisacsh Differential equations, Partial fast Hilbert space fast McGhee, D. F. has work: Partial differential equations (Text) https://id.oclc.org/worldcat/entity/E39PCGtvbTKfkdKGQ3jWFVGTH3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Picard, R.H. (Rainer H.). Partial differential equations. Berlin ; New York : De Gruyter, ©2011 9783110250268 (DLC) 2011004423 (OCoLC)705567992 De Gruyter expositions in mathematics ; 55. http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381760 Volltext 505-01/(S Machine generated contents note: 1. Elements of Hilbert Space Theory -- 1.1. Hilbert Space -- 1.2. Some Construction Principles of Hilbert Spaces -- 1.2.1. Direct Sums of Hilbert Spaces -- 1.2.2. Dual Spaces -- 1.2.3. Tensor Products of Hilbert Spaces -- 2. Sobolev Lattices -- 2.1. Sobolev Chains -- 2.2. Sobolev Lattices -- 2.3. Sobolev Lattices from Tensor Products of Sobolev Chains -- 3. Linear Partial Differential Equations with Constant Coefficients -- 3.1. Partial Differential Equations in H-[∞]([∂]ν + e) -- 3.1.1. First Steps Towards a Solution Theory -- 3.1.2. The Tarski-Seidenberg Theorem and some Consequences -- 3.1.3. Regularity Loss (0 ...,0) -- 3.1.4. Classification of Partial Differential Equations -- 3.1.5. The Classical Classification of Partial Differential Equations -- 3.1.6. Elliptic, Parabolic, Hyperbolic-- 3.1.7. Evolutionary Expressions in Canonical Form -- 3.1.8. Functions of [∂]ν and Convolutions -- 3.1.9. Systems and Scalar Equations. |
spellingShingle | Picard, R. H. (Rainer H.) Partial differential equations : a unified Hilbert space approach / De Gruyter expositions in mathematics ; Preface; Contents; Nomenclature; 1 Elements of Hilbert Space Theory; 2 Sobolev Lattices; 3 Linear Partial Differential Equations with Constant Coefficients; 4 Linear Evolution Equations; 5 Some Evolution Equations of Mathematical Physics; 6 A "Royal Road" to Initial Boundary Value Problems; Conclusion; Bibliography; Index. Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Differential equations, Partial. Equations. Hilbert space. Espace de Hilbert. Équations aux dérivées partielles. MATHEMATICS Transformations. bisacsh Differential equations, Partial fast Hilbert space fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85060803 http://id.loc.gov/authorities/subjects/sh85037912 |
title | Partial differential equations : a unified Hilbert space approach / |
title_auth | Partial differential equations : a unified Hilbert space approach / |
title_exact_search | Partial differential equations : a unified Hilbert space approach / |
title_full | Partial differential equations : a unified Hilbert space approach / Rainer Picard, Des McGhee. |
title_fullStr | Partial differential equations : a unified Hilbert space approach / Rainer Picard, Des McGhee. |
title_full_unstemmed | Partial differential equations : a unified Hilbert space approach / Rainer Picard, Des McGhee. |
title_short | Partial differential equations : |
title_sort | partial differential equations a unified hilbert space approach |
title_sub | a unified Hilbert space approach / |
topic | Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Differential equations, Partial. http://id.loc.gov/authorities/subjects/sh85037912 Differential equations, Partial. Equations. Hilbert space. Espace de Hilbert. Équations aux dérivées partielles. MATHEMATICS Transformations. bisacsh Differential equations, Partial fast Hilbert space fast |
topic_facet | Hilbert space. Differential equations, Partial. Equations. Espace de Hilbert. Équations aux dérivées partielles. MATHEMATICS Transformations. Differential equations, Partial Hilbert space |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=381760 |
work_keys_str_mv | AT picardrh partialdifferentialequationsaunifiedhilbertspaceapproach AT mcgheedf partialdifferentialequationsaunifiedhilbertspaceapproach |