Stochastic partial differential equations with Lévy noise :: an evolution equation approach /
Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time i...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2007.
|
Schriftenreihe: | Encyclopedia of mathematics and its applications ;
volume 113. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science. |
Beschreibung: | 1 online resource (xii, 419 pages) |
Bibliographie: | Includes bibliographical references (pages 403-414) and index. |
ISBN: | 9781107089754 1107089751 9781107096059 1107096057 1139883437 9781139883436 1107101654 9781107101654 1107104084 9781107104082 0511721374 9780511721373 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn861692409 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 131029s2007 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d AUD |d EBLCP |d MHW |d DEBSZ |d YDXCP |d OCLCQ |d COO |d AU@ |d UKAHL |d OCLCQ |d K6U |d INARC |d VLY |d MM9 |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 776965730 |a 797855775 |a 1162252146 |a 1171527509 |a 1241932505 |a 1242478695 | ||
020 | |a 9781107089754 |q (electronic bk.) | ||
020 | |a 1107089751 |q (electronic bk.) | ||
020 | |a 9781107096059 | ||
020 | |a 1107096057 | ||
020 | |a 1139883437 | ||
020 | |a 9781139883436 | ||
020 | |a 1107101654 | ||
020 | |a 9781107101654 | ||
020 | |a 1107104084 | ||
020 | |a 9781107104082 | ||
020 | |a 0511721374 | ||
020 | |a 9780511721373 | ||
020 | |z 9780521879897 | ||
020 | |z 0521879892 | ||
020 | |z 9780511721373 | ||
035 | |a (OCoLC)861692409 |z (OCoLC)776965730 |z (OCoLC)797855775 |z (OCoLC)1162252146 |z (OCoLC)1171527509 |z (OCoLC)1241932505 |z (OCoLC)1242478695 | ||
050 | 4 | |a QA274.25 |b .P47 2007eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
072 | 7 | |a PBK. |2 bicssc | |
072 | 7 | |a PBKJ. |2 bicssc | |
072 | 7 | |a PBWL. |2 bicssc | |
082 | 7 | |a 515.353 |2 22 | |
084 | |a 31.70 |2 bcl | ||
084 | |a 31.45 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Peszat, S. | |
245 | 1 | 0 | |a Stochastic partial differential equations with Lévy noise : |b an evolution equation approach / |c S. Peszat and J. Zabczyk. |
264 | 1 | |a Cambridge : |b Cambridge University Press, |c 2007. | |
300 | |a 1 online resource (xii, 419 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications ; |v volume 113 | |
504 | |a Includes bibliographical references (pages 403-414) and index. | ||
505 | 0 | |a 1. Why equations with Levy noise? -- 2. Analytic preliminaries -- 3. Probabilistic preliminaries -- 4. Levy processes -- 5. Levy semigroups -- 6. Poisson random measures -- 7. Cylindrical processes and reproducing kernels -- 8. Stochastic integration -- 9. General existence and uniqueness results -- 10. Equations with non-Lipschitz coefficients -- 11. Factorization and regularity -- 12. Stochastic parabolic problems -- 13. Wave and delay equations -- 14. Equations driven by a spatially homogeneous noise -- 15. Equations with noise on the boundary -- 16. Invariant measures -- 17. Lattice systems -- 18. Stochastic Burgers equation -- 19. Environmental pollution model -- 20. Bond market models -- App. A. Operators on Hilbert spaces -- App. B. Co-semigroups -- App. C. Regularization of Markov processes -- App. D. Ito formulae -- App. E. Levy-Khinchin formula on [0, + [infinity]) -- App. F. Proof of Lemma 4.24. | |
588 | 0 | |a Print version record. | |
520 | |a Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science. | ||
546 | |a English. | ||
650 | 0 | |a Stochastic partial differential equations. |0 http://id.loc.gov/authorities/subjects/sh87001697 | |
650 | 0 | |a Lévy processes. |0 http://id.loc.gov/authorities/subjects/sh95010454 | |
650 | 6 | |a Équations aux dérivées partielles stochastiques. | |
650 | 6 | |a Lévy, Processus de. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Lévy processes |2 fast | |
650 | 7 | |a Stochastic partial differential equations |2 fast | |
650 | 1 | 7 | |a Stochastische differentiaalvergelijkingen. |2 gtt |
650 | 1 | 7 | |a Partiële differentiaalvergelijkingen. |2 gtt |
700 | 1 | |a Zabczyk, Jerzy. | |
758 | |i has work: |a Stochastic partial differential equations with Lévy noise (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFrGH4hKyPJKCCJ7JqBmwK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Peszat, S. |t Stochastic partial differential equations with Lévy noise |z 9780521879897 |w (DLC) 2008295157 |w (OCoLC)144228601 |
830 | 0 | |a Encyclopedia of mathematics and its applications ; |v volume 113. |0 http://id.loc.gov/authorities/names/n42010632 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569373 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13430699 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385206 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL891223 | ||
938 | |a ebrary |b EBRY |n ebr10561235 | ||
938 | |a EBSCOhost |b EBSC |n 569373 | ||
938 | |a Internet Archive |b INAR |n stochasticpartia0000pesz | ||
938 | |a YBP Library Services |b YANK |n 3583253 | ||
938 | |a YBP Library Services |b YANK |n 11311214 | ||
938 | |a YBP Library Services |b YANK |n 11817897 | ||
938 | |a YBP Library Services |b YANK |n 13015645 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn861692409 |
---|---|
_version_ | 1816882248923742208 |
adam_text | |
any_adam_object | |
author | Peszat, S. |
author2 | Zabczyk, Jerzy |
author2_role | |
author2_variant | j z jz |
author_facet | Peszat, S. Zabczyk, Jerzy |
author_role | |
author_sort | Peszat, S. |
author_variant | s p sp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.25 .P47 2007eb |
callnumber-search | QA274.25 .P47 2007eb |
callnumber-sort | QA 3274.25 P47 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Why equations with Levy noise? -- 2. Analytic preliminaries -- 3. Probabilistic preliminaries -- 4. Levy processes -- 5. Levy semigroups -- 6. Poisson random measures -- 7. Cylindrical processes and reproducing kernels -- 8. Stochastic integration -- 9. General existence and uniqueness results -- 10. Equations with non-Lipschitz coefficients -- 11. Factorization and regularity -- 12. Stochastic parabolic problems -- 13. Wave and delay equations -- 14. Equations driven by a spatially homogeneous noise -- 15. Equations with noise on the boundary -- 16. Invariant measures -- 17. Lattice systems -- 18. Stochastic Burgers equation -- 19. Environmental pollution model -- 20. Bond market models -- App. A. Operators on Hilbert spaces -- App. B. Co-semigroups -- App. C. Regularization of Markov processes -- App. D. Ito formulae -- App. E. Levy-Khinchin formula on [0, + [infinity]) -- App. F. Proof of Lemma 4.24. |
ctrlnum | (OCoLC)861692409 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05801cam a2200901 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn861692409</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">131029s2007 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">AUD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">INARC</subfield><subfield code="d">VLY</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">776965730</subfield><subfield code="a">797855775</subfield><subfield code="a">1162252146</subfield><subfield code="a">1171527509</subfield><subfield code="a">1241932505</subfield><subfield code="a">1242478695</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089754</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089751</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107096059</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107096057</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139883437</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139883436</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107101654</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107101654</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107104084</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107104082</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721374</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721373</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521879897</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521879892</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511721373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)861692409</subfield><subfield code="z">(OCoLC)776965730</subfield><subfield code="z">(OCoLC)797855775</subfield><subfield code="z">(OCoLC)1162252146</subfield><subfield code="z">(OCoLC)1171527509</subfield><subfield code="z">(OCoLC)1241932505</subfield><subfield code="z">(OCoLC)1242478695</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.25</subfield><subfield code="b">.P47 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBK.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBKJ.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PBWL.</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.45</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peszat, S.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic partial differential equations with Lévy noise :</subfield><subfield code="b">an evolution equation approach /</subfield><subfield code="c">S. Peszat and J. Zabczyk.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 419 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 113</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 403-414) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Why equations with Levy noise? -- 2. Analytic preliminaries -- 3. Probabilistic preliminaries -- 4. Levy processes -- 5. Levy semigroups -- 6. Poisson random measures -- 7. Cylindrical processes and reproducing kernels -- 8. Stochastic integration -- 9. General existence and uniqueness results -- 10. Equations with non-Lipschitz coefficients -- 11. Factorization and regularity -- 12. Stochastic parabolic problems -- 13. Wave and delay equations -- 14. Equations driven by a spatially homogeneous noise -- 15. Equations with noise on the boundary -- 16. Invariant measures -- 17. Lattice systems -- 18. Stochastic Burgers equation -- 19. Environmental pollution model -- 20. Bond market models -- App. A. Operators on Hilbert spaces -- App. B. Co-semigroups -- App. C. Regularization of Markov processes -- App. D. Ito formulae -- App. E. Levy-Khinchin formula on [0, + [infinity]) -- App. F. Proof of Lemma 4.24.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic partial differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh87001697</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lévy processes.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh95010454</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles stochastiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Lévy, Processus de.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lévy processes</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic partial differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Stochastische differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Partiële differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabczyk, Jerzy.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Stochastic partial differential equations with Lévy noise (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFrGH4hKyPJKCCJ7JqBmwK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Peszat, S.</subfield><subfield code="t">Stochastic partial differential equations with Lévy noise</subfield><subfield code="z">9780521879897</subfield><subfield code="w">(DLC) 2008295157</subfield><subfield code="w">(OCoLC)144228601</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications ;</subfield><subfield code="v">volume 113.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42010632</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569373</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13430699</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385206</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL891223</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10561235</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">569373</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">stochasticpartia0000pesz</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3583253</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11311214</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11817897</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">13015645</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn861692409 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:36Z |
institution | BVB |
isbn | 9781107089754 1107089751 9781107096059 1107096057 1139883437 9781139883436 1107101654 9781107101654 1107104084 9781107104082 0511721374 9780511721373 |
language | English |
oclc_num | 861692409 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 419 pages) |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge University Press, |
record_format | marc |
series | Encyclopedia of mathematics and its applications ; |
series2 | Encyclopedia of mathematics and its applications ; |
spelling | Peszat, S. Stochastic partial differential equations with Lévy noise : an evolution equation approach / S. Peszat and J. Zabczyk. Cambridge : Cambridge University Press, 2007. 1 online resource (xii, 419 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Encyclopedia of mathematics and its applications ; volume 113 Includes bibliographical references (pages 403-414) and index. 1. Why equations with Levy noise? -- 2. Analytic preliminaries -- 3. Probabilistic preliminaries -- 4. Levy processes -- 5. Levy semigroups -- 6. Poisson random measures -- 7. Cylindrical processes and reproducing kernels -- 8. Stochastic integration -- 9. General existence and uniqueness results -- 10. Equations with non-Lipschitz coefficients -- 11. Factorization and regularity -- 12. Stochastic parabolic problems -- 13. Wave and delay equations -- 14. Equations driven by a spatially homogeneous noise -- 15. Equations with noise on the boundary -- 16. Invariant measures -- 17. Lattice systems -- 18. Stochastic Burgers equation -- 19. Environmental pollution model -- 20. Bond market models -- App. A. Operators on Hilbert spaces -- App. B. Co-semigroups -- App. C. Regularization of Markov processes -- App. D. Ito formulae -- App. E. Levy-Khinchin formula on [0, + [infinity]) -- App. F. Proof of Lemma 4.24. Print version record. Recent years have seen an explosion of interest in stochastic partial differential equations where the driving noise is discontinuous. In this comprehensive monograph, two leading experts detail the evolution equation approach to their solution. Most of the results appeared here for the first time in book form. The authors start with a detailed analysis of Lévy processes in infinite dimensions and their reproducing kernel Hilbert spaces; cylindrical Lévy processes are constructed in terms of Poisson random measures; stochastic integrals are introduced. Stochastic parabolic and hyperbolic equations on domains of arbitrary dimensions are studied, and applications to statistical and fluid mechanics and to finance are also investigated. Ideal for researchers and graduate students in stochastic processes and partial differential equations, this self-contained text will also interest those working on stochastic modeling in finance, statistical physics and environmental science. English. Stochastic partial differential equations. http://id.loc.gov/authorities/subjects/sh87001697 Lévy processes. http://id.loc.gov/authorities/subjects/sh95010454 Équations aux dérivées partielles stochastiques. Lévy, Processus de. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Lévy processes fast Stochastic partial differential equations fast Stochastische differentiaalvergelijkingen. gtt Partiële differentiaalvergelijkingen. gtt Zabczyk, Jerzy. has work: Stochastic partial differential equations with Lévy noise (Text) https://id.oclc.org/worldcat/entity/E39PCFrGH4hKyPJKCCJ7JqBmwK https://id.oclc.org/worldcat/ontology/hasWork Print version: Peszat, S. Stochastic partial differential equations with Lévy noise 9780521879897 (DLC) 2008295157 (OCoLC)144228601 Encyclopedia of mathematics and its applications ; volume 113. http://id.loc.gov/authorities/names/n42010632 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569373 Volltext |
spellingShingle | Peszat, S. Stochastic partial differential equations with Lévy noise : an evolution equation approach / Encyclopedia of mathematics and its applications ; 1. Why equations with Levy noise? -- 2. Analytic preliminaries -- 3. Probabilistic preliminaries -- 4. Levy processes -- 5. Levy semigroups -- 6. Poisson random measures -- 7. Cylindrical processes and reproducing kernels -- 8. Stochastic integration -- 9. General existence and uniqueness results -- 10. Equations with non-Lipschitz coefficients -- 11. Factorization and regularity -- 12. Stochastic parabolic problems -- 13. Wave and delay equations -- 14. Equations driven by a spatially homogeneous noise -- 15. Equations with noise on the boundary -- 16. Invariant measures -- 17. Lattice systems -- 18. Stochastic Burgers equation -- 19. Environmental pollution model -- 20. Bond market models -- App. A. Operators on Hilbert spaces -- App. B. Co-semigroups -- App. C. Regularization of Markov processes -- App. D. Ito formulae -- App. E. Levy-Khinchin formula on [0, + [infinity]) -- App. F. Proof of Lemma 4.24. Stochastic partial differential equations. http://id.loc.gov/authorities/subjects/sh87001697 Lévy processes. http://id.loc.gov/authorities/subjects/sh95010454 Équations aux dérivées partielles stochastiques. Lévy, Processus de. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Lévy processes fast Stochastic partial differential equations fast Stochastische differentiaalvergelijkingen. gtt Partiële differentiaalvergelijkingen. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh87001697 http://id.loc.gov/authorities/subjects/sh95010454 |
title | Stochastic partial differential equations with Lévy noise : an evolution equation approach / |
title_auth | Stochastic partial differential equations with Lévy noise : an evolution equation approach / |
title_exact_search | Stochastic partial differential equations with Lévy noise : an evolution equation approach / |
title_full | Stochastic partial differential equations with Lévy noise : an evolution equation approach / S. Peszat and J. Zabczyk. |
title_fullStr | Stochastic partial differential equations with Lévy noise : an evolution equation approach / S. Peszat and J. Zabczyk. |
title_full_unstemmed | Stochastic partial differential equations with Lévy noise : an evolution equation approach / S. Peszat and J. Zabczyk. |
title_short | Stochastic partial differential equations with Lévy noise : |
title_sort | stochastic partial differential equations with levy noise an evolution equation approach |
title_sub | an evolution equation approach / |
topic | Stochastic partial differential equations. http://id.loc.gov/authorities/subjects/sh87001697 Lévy processes. http://id.loc.gov/authorities/subjects/sh95010454 Équations aux dérivées partielles stochastiques. Lévy, Processus de. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Lévy processes fast Stochastic partial differential equations fast Stochastische differentiaalvergelijkingen. gtt Partiële differentiaalvergelijkingen. gtt |
topic_facet | Stochastic partial differential equations. Lévy processes. Équations aux dérivées partielles stochastiques. Lévy, Processus de. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Lévy processes Stochastic partial differential equations Stochastische differentiaalvergelijkingen. Partiële differentiaalvergelijkingen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=569373 |
work_keys_str_mv | AT peszats stochasticpartialdifferentialequationswithlevynoiseanevolutionequationapproach AT zabczykjerzy stochasticpartialdifferentialequationswithlevynoiseanevolutionequationapproach |