Machine learning with R quick start guide :: a beginner's guide to implementing machine learning techniques from scratch using R 3.5 /
This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use ca...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK :
Packt Publishing,
2019.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases. |
Beschreibung: | 1 online resource : illustrations |
ISBN: | 1838647058 9781838647056 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-on1100643399 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr unu|||||||| | ||
008 | 190509s2019 enka o 000 0 eng d | ||
040 | |a UMI |b eng |e rda |e pn |c UMI |d TEFOD |d EBLCP |d MERUC |d UKMGB |d OCLCF |d YDX |d UKAHL |d OCLCQ |d N$T |d OCLCO |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCL |d SXB | ||
015 | |a GBB995017 |2 bnb | ||
016 | 7 | |a 019365493 |2 Uk | |
019 | |a 1091700087 |a 1096538373 | ||
020 | |a 1838647058 | ||
020 | |a 9781838647056 |q (electronic bk.) | ||
020 | |z 9781838644338 | ||
035 | |a (OCoLC)1100643399 |z (OCoLC)1091700087 |z (OCoLC)1096538373 | ||
037 | |a CL0501000047 |b Safari Books Online | ||
050 | 4 | |a Q325.5 | |
082 | 7 | |a 006.31 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Pastor Sanz, Iván, |e author. | |
245 | 1 | 0 | |a Machine learning with R quick start guide : |b a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |c Iván Pastor Sanz. |
264 | 1 | |a Birmingham, UK : |b Packt Publishing, |c 2019. | |
300 | |a 1 online resource : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Online resource; title from title page (Safari, viewed May 9, 2019). | |
505 | 0 | |a Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists | |
505 | 8 | |a Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable | |
505 | 8 | |a Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis | |
505 | 8 | |a Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines | |
505 | 8 | |a Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data | |
520 | |a This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases. | ||
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 0 | |a R (Computer program language) |0 http://id.loc.gov/authorities/subjects/sh2002004407 | |
650 | 6 | |a Apprentissage automatique. | |
650 | 6 | |a R (Langage de programmation) | |
650 | 7 | |a Machine learning |2 fast | |
650 | 7 | |a R (Computer program language) |2 fast | |
655 | 4 | |a Electronic book. | |
758 | |i has work: |a Machine learning with R quick start guide (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3HwPYVjrpDJ7HP8xp3cw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Sanz, Iván Pastor. |t Machine Learning with R Quick Start Guide : A Beginner's Guide to Implementing Machine Learning Techniques from Scratch Using R 3. 5. |d Birmingham : Packt Publishing Ltd, ©2019 |z 9781838644338 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094784 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n BDZ0039952970 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL5744469 | ||
938 | |a EBSCOhost |b EBSC |n 2094784 | ||
938 | |a YBP Library Services |b YANK |n 16142490 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-on1100643399 |
---|---|
_version_ | 1816882492727099392 |
adam_text | |
any_adam_object | |
author | Pastor Sanz, Iván |
author_facet | Pastor Sanz, Iván |
author_role | aut |
author_sort | Pastor Sanz, Iván |
author_variant | s i p si sip |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.5 |
callnumber-search | Q325.5 |
callnumber-sort | Q 3325.5 |
callnumber-subject | Q - General Science |
collection | ZDB-4-EBA |
contents | Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data |
ctrlnum | (OCoLC)1100643399 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05772cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-on1100643399</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr unu||||||||</controlfield><controlfield tag="008">190509s2019 enka o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UMI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">UMI</subfield><subfield code="d">TEFOD</subfield><subfield code="d">EBLCP</subfield><subfield code="d">MERUC</subfield><subfield code="d">UKMGB</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDX</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB995017</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">019365493</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1091700087</subfield><subfield code="a">1096538373</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1838647058</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838647056</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781838644338</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1100643399</subfield><subfield code="z">(OCoLC)1091700087</subfield><subfield code="z">(OCoLC)1096538373</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0501000047</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pastor Sanz, Iván,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning with R quick start guide :</subfield><subfield code="b">a beginner's guide to implementing machine learning techniques from scratch using R 3.5 /</subfield><subfield code="c">Iván Pastor Sanz.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK :</subfield><subfield code="b">Packt Publishing,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from title page (Safari, viewed May 9, 2019).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2002004407</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">R (Langage de programmation)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">R (Computer program language)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic book.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Machine learning with R quick start guide (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD3HwPYVjrpDJ7HP8xp3cw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sanz, Iván Pastor.</subfield><subfield code="t">Machine Learning with R Quick Start Guide : A Beginner's Guide to Implementing Machine Learning Techniques from Scratch Using R 3. 5.</subfield><subfield code="d">Birmingham : Packt Publishing Ltd, ©2019</subfield><subfield code="z">9781838644338</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094784</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">BDZ0039952970</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL5744469</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">2094784</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">16142490</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic book. |
genre_facet | Electronic book. |
id | ZDB-4-EBA-on1100643399 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:29:28Z |
institution | BVB |
isbn | 1838647058 9781838647056 |
language | English |
oclc_num | 1100643399 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Packt Publishing, |
record_format | marc |
spelling | Pastor Sanz, Iván, author. Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / Iván Pastor Sanz. Birmingham, UK : Packt Publishing, 2019. 1 online resource : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Online resource; title from title page (Safari, viewed May 9, 2019). Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases. Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast Electronic book. has work: Machine learning with R quick start guide (Text) https://id.oclc.org/worldcat/entity/E39PD3HwPYVjrpDJ7HP8xp3cw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Sanz, Iván Pastor. Machine Learning with R Quick Start Guide : A Beginner's Guide to Implementing Machine Learning Techniques from Scratch Using R 3. 5. Birmingham : Packt Publishing Ltd, ©2019 9781838644338 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094784 Volltext |
spellingShingle | Pastor Sanz, Iván Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / Cover; Title Page; Copyright and Credits; About Packt; Contributors; Table of Contents; Preface; Chapter 1: R Fundamentals for Machine Learning; R and RStudio installation; Things to know about R; Using RStudio; RStudio installation ; Some basic commands; Objects, special cases, and basic operators in R; Working with objects; Working with vectors; Vector indexing; Functions on vectors; Factor; Factor levels; Strings; String functions; Matrices; Representing matrices; Creating matrices; Accessing elements in a matrix; Matrix functions; Lists; Creating lists Accessing components and elements in a listData frames; Accessing elements in data frames; Functions of data frames; Importing or exporting data; Working with functions; Controlling code flow; All about R packages; Installing packages; Necessary packages; Taking further steps; Background on the financial crisis; Summary; Chapter 2: Predicting Failures of Banks -- Data Collection; Collecting financial data; Why FDIC?; Listing files; Finding files; Combining results; Removing tables; Knowing your observations; Handling duplications; Operating our problem; Collecting the target variable Structuring dataSummary; Chapter 3: Predicting Failures of Banks -- Descriptive Analysis; Data overview; Getting acquainted with our variables; Finding missing values for a variable; Converting the format of the variables; Sampling; Partitioning samples; Checking samples; Implementing descriptive analysis; Dealing with outliers; The winsorization process; Implementing winsorization; Distinguishing single valued variables; Treating missing information; Analyzing the missing value; Understanding the results; Summary; Chapter 4: Predicting Failures of Banks -- Univariate Analysis Feature selection algorithmFeature selection classes; Filter methods; Wrapper methods; Boruta package; Embedded methods; Ridge regression; A limitation of Ridge regression; Lasso ; Limitations of Lasso; Elastic net; Drawbacks of elastic net; Dimensionality reduction; Dimensionality reduction technique; Summary; Chapter 5: Predicting Failures of Banks -- Multivariate Analysis; Logistic regression; Regularized methods; Testing a random forest model; Gradient boosting; Deep learning in neural networks; Designing a neural network; Training a neural network; Support vector machines Selecting SVM parametersThe SVM kernel parameter; The cost parameter; Gamma parameter; Training an SVM model; Ensembles; Average model; Majority vote; Model of models; Automatic machine learning; Standardizing variables; Summary ; Chapter 6: Visualizing Economic Problems in the European Union; A general overview of economic problems in countries; Understanding credit ratings; The role of credit rating agencies; The credit rating process; Clustering countries based on macroeconomic imbalances; Data collection; Downloading and viewing the data; Streamlining data; Studying the data Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85079324 http://id.loc.gov/authorities/subjects/sh2002004407 |
title | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |
title_auth | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |
title_exact_search | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |
title_full | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / Iván Pastor Sanz. |
title_fullStr | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / Iván Pastor Sanz. |
title_full_unstemmed | Machine learning with R quick start guide : a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / Iván Pastor Sanz. |
title_short | Machine learning with R quick start guide : |
title_sort | machine learning with r quick start guide a beginner s guide to implementing machine learning techniques from scratch using r 3 5 |
title_sub | a beginner's guide to implementing machine learning techniques from scratch using R 3.5 / |
topic | Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 R (Computer program language) http://id.loc.gov/authorities/subjects/sh2002004407 Apprentissage automatique. R (Langage de programmation) Machine learning fast R (Computer program language) fast |
topic_facet | Machine learning. R (Computer program language) Apprentissage automatique. R (Langage de programmation) Machine learning Electronic book. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2094784 |
work_keys_str_mv | AT pastorsanzivan machinelearningwithrquickstartguideabeginnersguidetoimplementingmachinelearningtechniquesfromscratchusingr35 |