Algebra: Some Recent Advances
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1999
|
Schriftenreihe: | Trends in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S. K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I. B. S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics |
Beschreibung: | 1 Online-Ressource (VIII, 250 p) |
ISBN: | 9783034899963 9783034899987 |
DOI: | 10.1007/978-3-0348-9996-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422351 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783034899963 |c Online |9 978-3-0348-9996-3 | ||
020 | |a 9783034899987 |c Print |9 978-3-0348-9998-7 | ||
024 | 7 | |a 10.1007/978-3-0348-9996-3 |2 doi | |
035 | |a (OCoLC)863982931 | ||
035 | |a (DE-599)BVBBV042422351 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Passi, I. B. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Algebra |b Some Recent Advances |c edited by I. B. S. Passi |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1999 | |
300 | |a 1 Online-Ressource (VIII, 250 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Trends in Mathematics | |
500 | |a The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S. K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I. B. S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9996-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857768 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096687845376 |
---|---|
any_adam_object | |
author | Passi, I. B. S. |
author_facet | Passi, I. B. S. |
author_role | aut |
author_sort | Passi, I. B. S. |
author_variant | i b s p ibs ibsp |
building | Verbundindex |
bvnumber | BV042422351 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863982931 (DE-599)BVBBV042422351 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9996-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02974nmm a2200469zc 4500</leader><controlfield tag="001">BV042422351</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899963</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9996-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899987</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9998-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9996-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863982931</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422351</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Passi, I. B. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebra</subfield><subfield code="b">Some Recent Advances</subfield><subfield code="c">edited by I. B. S. Passi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 250 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Trends in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S. K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I. B. S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9996-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857768</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042422351 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783034899963 9783034899987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857768 |
oclc_num | 863982931 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 250 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Trends in Mathematics |
spelling | Passi, I. B. S. Verfasser aut Algebra Some Recent Advances edited by I. B. S. Passi Basel Birkhäuser Basel 1999 1 Online-Ressource (VIII, 250 p) txt rdacontent c rdamedia cr rdacarrier Trends in Mathematics The Indian National. Science Academy has planned to bring out monographs on special topics with the aim of providing acce~sible surveys/reviews of topics of current research in various fields. Prof. S. K. Malik, FNA, Editor of Publications INSA asked me in October 1997 to edit a volume on algebra in this series. I invited a number of algebraists, several of them working in group rings, and it is with great satisfaction and sincere thanks to the authors that I present here in Algebra: Some Recent Advances the sixteen contributions received in response to my invitations. I. B. S. Passi On Abelian Difference Sets K. r Arasu* and Surinder K. Sehgal 1. Introduction We review some existence and nonexistence results - new and old - on abelian difference sets. Recent surveys on difference sets can be found in Arasu (1990), Jungnickel (1992a, b), Pott (1995), Jungnickel and Schmidt (1997), and Davis and Jedwab (1996). Standard references for difference sets are Baumert (1971), Beth et al. (1998), and Lander (1983). This article presents a flavour of the subject, by discussing some selected topics. Difference sets are very important in combinatorial design theory and in commu nication engineering while designing sequences with good correlation properties. Our extended bibliography covers a wide variety of papers written in the area of difference sets and related topics Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Algebra (DE-588)4001156-2 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-9996-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Passi, I. B. S. Algebra Some Recent Advances Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4143413-4 |
title | Algebra Some Recent Advances |
title_auth | Algebra Some Recent Advances |
title_exact_search | Algebra Some Recent Advances |
title_full | Algebra Some Recent Advances edited by I. B. S. Passi |
title_fullStr | Algebra Some Recent Advances edited by I. B. S. Passi |
title_full_unstemmed | Algebra Some Recent Advances edited by I. B. S. Passi |
title_short | Algebra |
title_sort | algebra some recent advances |
title_sub | Some Recent Advances |
topic | Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Algebra Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-0348-9996-3 |
work_keys_str_mv | AT passiibs algebrasomerecentadvances |