Screw theory in robotics: an illustrated and practicable introduction to modern mechanics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Online-Zugang: | TUM01 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (xxv, 284 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000481563 9781003216858 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048220978 | ||
003 | DE-604 | ||
005 | 20240220 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000481563 |9 978-1-00-048156-3 | ||
020 | |a 9781003216858 |9 978-1-003-21685-8 | ||
035 | |a (ZDB-30-PQE)EBC6789953 | ||
035 | |a (ZDB-30-PAD)EBC6789953 | ||
035 | |a (ZDB-89-EBL)EBL6789953 | ||
035 | |a (OCoLC)1283849756 | ||
035 | |a (DE-599)BVBBV048220978 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a FER 980 |2 stub | ||
084 | |a DAT 850 |2 stub | ||
100 | 1 | |a Pardos-Gotor, Jose M. |e Verfasser |0 (DE-588)1267031565 |4 aut | |
245 | 1 | 0 | |a Screw theory in robotics |b an illustrated and practicable introduction to modern mechanics |c Jose M. Pardos-Gotor |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xxv, 284 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- List of Abbreviations -- Author -- Introduction -- Chapter 1: Introduction -- 1.1 Motivation -- 1.1.1 A Historical Quest! -- 1.1.2 A Hundred Years of Menacing Robots! -- 1.1.3 A Century of Helping Robots! -- 1.1.4 And Only 50 Years of Commercial Robots! -- 1.1.5 The Mathematical Complexity of Robotics -- 1.1.6 Here Comes Screw Theory in Robotics -- 1.1.7 The Future of Robotics -- 1.2 About This Book -- 1.3 Preview -- 1.3.1 Outline -- 1.3.2 Chapter 1: Introduction -- 1.3.3 Chapter 2: Mathematical Tools -- 1.3.4 Chapter 3: Forward Kinematics -- 1.3.5 Chapter 4: Inverse Kinematics -- 1.3.6 Chapter 5: Differential Kinematics -- 1.3.7 Chapter 6: Inverse Dynamics -- 1.3.8 Chapter 7: Trajectory Generation -- 1.3.9 Chapter 8: Robotics Simulation -- 1.3.10 Chapter 9: Conclusions -- 1.4 Audience -- Further Reading -- Note -- Chapter 2: Mathematical Tools -- 2.1 Rigid Body Motion -- 2.2 Homogeneous Representation -- 2.2.1 Standard Rigid Body Motion -- 2.2.2 Homogeneous Basic Transformations -- 2.2.3 Motion Composition in the SPATIAL "S" Reference System -- 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems -- 2.2.5 Geometrical Interpretation -- 2.2.6 Exercise: Homogeneous Rotation -- 2.2.7 Exercise: Homogeneous Rotation Plus Translation -- 2.3 Exponential Representation -- 2.3.1 Modern Rigid Body Motion -- 2.3.2 Screw Rotation (Orientation) -- 2.3.3 Rigid Body Motion TWIST -- 2.3.4 Rigid Body Force WRENCH -- 2.3.5 Exponential Coordinates for a SCREW Motion -- 2.3.6 Exercise: Exponential Rotation -- 2.3.7 Exercise: Exponential Rotation Plus Translation -- 2.4 Summary -- Notes -- Chapter 3: Forward Kinematics -- 3.1 Problem Statement in Robotics -- 3.1.1 Kinematics Concept -- 3.1.2 Kinematics Mathematical Approach | |
505 | 8 | |a 3.1.3 Forward Kinematics (FK) -- 3.2 Denavit-Hartenberg Convention (DH) -- 3.2.1 Kinematics Treatment -- 3.2.2 DH FK Homogeneous Matrix Product -- 3.2.3 Puma Robots (e.g., ABB IRB120) -- 3.3 Product of Exponentials Formulation -- 3.3.1 A New Kinematics Treatment -- 3.3.2 General Solution to Forward Kinematics -- 3.3.3 Puma Robots (e.g., ABB IRB120) -- 3.3.4 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) -- 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) -- 3.3.7 Scara Robots (e.g., ABB IRB910SC) -- 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 3.3.9 Redundant Robots (e.g., KUKA IIWA) -- 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 3.4 Summary -- Notes -- Chapter 4: Inverse Kinematics -- 4.1 Problem Statement in Robotics and Analytical Difficulty -- 4.1.1 Kinematics Concept -- 4.1.2 Inverse Kinematics Mathematical Approach -- 4.1.3 Analytical Difficulty to Solve Inverse Kinematics -- 4.2 Numeric vs. Geometric Solutions -- 4.2.1 A Numeric Approach to Solve Inverse Kinematics -- 4.2.2 An Example of a Numeric Algorithm -- 4.2.3 A Geometric Approach to Solve Inverse Kinematics -- 4.2.4 An Example of a Geometric Algorithm -- 4.2.5 Puma Robot Inverse Kinematics Algorithms -- 4.3 Canonical Subproblems for Inverse Kinematics -- 4.3.1 A Key Idea to Solve Inverse Kinematics -- 4.3.2 Paden-Kahan Subproblem One (PK1) - One Rotation -- 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT -- 4.3.2.2 PK1 Subproblem Simplification -- 4.3.3 Paden-Kahan Subproblem Two (PK2) - Two Crossing Rotations -- 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT -- 4.3.4 Paden-Kahan Subproblem Three (PK3) - Rotation to a Distance -- 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT -- 4.3.4.2 PK3 Subproblem Simplification -- 4.3.5 Pardos-Gotor Subproblem One (PG1) - One Translation | |
505 | 8 | |a 4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT -- 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE -- 4.3.6 Pardos-Gotor Subproblem Two (PG2) - Two Crossing Translations -- 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT -- 4.3.7 Pardos-Gotor Subproblem Three (PG3) - Translation to a Distance -- 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT -- 4.3.8 Pardos-Gotor Subproblem Four (PG4) - Two Parallel Rotations -- 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT -- 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE -- 4.3.9 Pardos-Gotor Subproblem Five (PG5) - Rotation of a Line or Plane -- 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE -- 4.3.10 Pardos-Gotor Subproblem Six (PG6) - Two Skewed Rotations -- 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT -- 4.3.11 Pardos-Gotor Subproblem Seven (PG7) - Three Rotations to a Point -- 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT -- 4.3.12 Pardos-Gotor Subproblem Eight (PG8) - Three Rotations to A Pose -- 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM -- 4.4 Product of Exponentials Approach -- 4.4.1 General Solution to Inverse Kinematics -- 4.4.2 Puma Robots (e.g., ABB IRB120) -- 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition -- 4.4.2.2 First Algorithm for ABB IRB120 IK "PK3+PK2+PK2+PK1" -- 4.4.2.3 Second Algorithm for ABB IRB120 IK "PG7+PK2+PK1" -- 4.4.2.4 Third Algorithm for ABB IRB120 IK "PG5+PG4+PK2+PK1" -- 4.4.2.5 Fourth Algorithm for ABB IRB120 IK "PG5+PG4+PG6+PK1" -- 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK. | |
505 | 8 | |a 4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK -- 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms -- 4.4.2.9 RST Robotics System Toolbox™ -- 4.4.2.10 ST24R Screw Theory Toolbox for Robotics -- 4.4.3 Puma Robots (e.g., ABB IRB120) "Tool-Up." -- 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 "Tool-Up" Problem Definition -- 4.4.3.2 First Algorithm for ABB IRB120 "Tool-Up" IK "PG7+PG6+PK1" -- 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) -- 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition -- 4.4.4.2 First Algorithm for ABB IRB1600 IK "PG7+PG6+PK1" -- 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) -- 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition -- 4.4.5.2 First Algorithm for ABB IRB6620LX IK "PG1+PG4+PG6+PK1" -- 4.4.6 Scara Robots (e.g., ABB IRB910SC) -- 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition -- 4.4.6.2 First Algorithm for ABB IRB910SC IK "PG1+PG4+PK1" -- 4.4.6.3 Second Algorithm for ABB IRB910SC IK "PG1+PK3+PK1+PK1" -- 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation -- 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition -- 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK "PG5+PG3+PK1+PG8" -- 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation -- 4.4.8 Redundant Robots (e.g., KUKA IIWA) -- 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition -- 4.4.8.2 First Algorithm for KUKA IIWA IK "PK1+PK3+PK2+PK2+PK2+PK1" -- 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation -- 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 4.5 Summary -- Notes -- Chapter 5: Differential Kinematics -- 5.1 Problem Statement in Robotics -- 5.2 The Analytic Jacobian -- 5.2.1 A Traditional Description | |
505 | 8 | |a 5.2.2 Analytic Jacobian to Forward Differential Kinematics -- 5.2.3 Analytic Jacobian for Inverse Differential Kinematics -- 5.2.4 Scara Robot (e.g., ABB IRB910SC) -- 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian -- 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian -- 5.2.5 Puma Robot (e.g., ABB IRB120) -- 5.3 The Geometric Jacobian -- 5.3.1 Robot Spatial Geometric Jacobian -- 5.3.2 The Classical Adjoint Transformation (Ad) -- 5.3.3 Twist Velocity Concept -- 5.3.4 Trajectory Generation -- 5.3.5 Robot Tool Geometric Jacobian -- 5.3.6 Link Spatial and Link Tool Geometric Jacobian -- 5.3.7 The New Adjoint Transformation ( A ij) -- 5.3.8 General Solution to Differential Kinematics -- 5.3.8.1 The Kinematics Mapping -- 5.3.8.2 The Geometric Forward Differential Kinematics -- 5.3.8.3 The Geometric Inverse Differential Kinematics -- 5.3.9 Puma Robots (e.g., ABB IRB120) -- 5.3.9.1 Geometric Jacobian by Definition -- 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian -- 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.10 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) -- 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) -- 5.3.13 Scara Robots (e.g., ABB IRB910SC) -- 5.3.13.1 Geometric Jacobian by Inspection -- 5.3.13.2 Geometric Jacobian by Definition -- 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian -- 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 5.3.15 Redundant Robots (e.g., KUKA IIWA) -- 5.4 Summary -- Notes -- Chapter 6: Inverse Dynamics -- 6.1 Problem Statement in Robotics -- 6.2 The Lagrange Characterization -- 6.2.1 General Non-Recursive Solution to Inverse Dynamics -- 6.2.2 Puma Robots (e.g., ABB IRB120) -- 6.2.3 Puma Robots (e.g., ABB IRB120) "Tool-Up" | |
505 | 8 | |a 6.2.4 Bending Backwards Robots (e.g., ABB IRB1600) | |
776 | 0 | 8 | |i Erscheint auch als |a Pardos-Gotor, Jose M. |t Screw Theory in Robotics |d Milton : Taylor & Francis Group,c2021 |n Druck-Ausgabe, Hardcover |z 978-1-032-10736-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-10747-9 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601717 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6789953 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002013167616 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pardos-Gotor, Jose M. |
author_GND | (DE-588)1267031565 |
author_facet | Pardos-Gotor, Jose M. |
author_role | aut |
author_sort | Pardos-Gotor, Jose M. |
author_variant | j m p g jmp jmpg |
building | Verbundindex |
bvnumber | BV048220978 |
classification_tum | FER 980 DAT 850 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- List of Abbreviations -- Author -- Introduction -- Chapter 1: Introduction -- 1.1 Motivation -- 1.1.1 A Historical Quest! -- 1.1.2 A Hundred Years of Menacing Robots! -- 1.1.3 A Century of Helping Robots! -- 1.1.4 And Only 50 Years of Commercial Robots! -- 1.1.5 The Mathematical Complexity of Robotics -- 1.1.6 Here Comes Screw Theory in Robotics -- 1.1.7 The Future of Robotics -- 1.2 About This Book -- 1.3 Preview -- 1.3.1 Outline -- 1.3.2 Chapter 1: Introduction -- 1.3.3 Chapter 2: Mathematical Tools -- 1.3.4 Chapter 3: Forward Kinematics -- 1.3.5 Chapter 4: Inverse Kinematics -- 1.3.6 Chapter 5: Differential Kinematics -- 1.3.7 Chapter 6: Inverse Dynamics -- 1.3.8 Chapter 7: Trajectory Generation -- 1.3.9 Chapter 8: Robotics Simulation -- 1.3.10 Chapter 9: Conclusions -- 1.4 Audience -- Further Reading -- Note -- Chapter 2: Mathematical Tools -- 2.1 Rigid Body Motion -- 2.2 Homogeneous Representation -- 2.2.1 Standard Rigid Body Motion -- 2.2.2 Homogeneous Basic Transformations -- 2.2.3 Motion Composition in the SPATIAL "S" Reference System -- 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems -- 2.2.5 Geometrical Interpretation -- 2.2.6 Exercise: Homogeneous Rotation -- 2.2.7 Exercise: Homogeneous Rotation Plus Translation -- 2.3 Exponential Representation -- 2.3.1 Modern Rigid Body Motion -- 2.3.2 Screw Rotation (Orientation) -- 2.3.3 Rigid Body Motion TWIST -- 2.3.4 Rigid Body Force WRENCH -- 2.3.5 Exponential Coordinates for a SCREW Motion -- 2.3.6 Exercise: Exponential Rotation -- 2.3.7 Exercise: Exponential Rotation Plus Translation -- 2.4 Summary -- Notes -- Chapter 3: Forward Kinematics -- 3.1 Problem Statement in Robotics -- 3.1.1 Kinematics Concept -- 3.1.2 Kinematics Mathematical Approach 3.1.3 Forward Kinematics (FK) -- 3.2 Denavit-Hartenberg Convention (DH) -- 3.2.1 Kinematics Treatment -- 3.2.2 DH FK Homogeneous Matrix Product -- 3.2.3 Puma Robots (e.g., ABB IRB120) -- 3.3 Product of Exponentials Formulation -- 3.3.1 A New Kinematics Treatment -- 3.3.2 General Solution to Forward Kinematics -- 3.3.3 Puma Robots (e.g., ABB IRB120) -- 3.3.4 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) -- 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) -- 3.3.7 Scara Robots (e.g., ABB IRB910SC) -- 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 3.3.9 Redundant Robots (e.g., KUKA IIWA) -- 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 3.4 Summary -- Notes -- Chapter 4: Inverse Kinematics -- 4.1 Problem Statement in Robotics and Analytical Difficulty -- 4.1.1 Kinematics Concept -- 4.1.2 Inverse Kinematics Mathematical Approach -- 4.1.3 Analytical Difficulty to Solve Inverse Kinematics -- 4.2 Numeric vs. Geometric Solutions -- 4.2.1 A Numeric Approach to Solve Inverse Kinematics -- 4.2.2 An Example of a Numeric Algorithm -- 4.2.3 A Geometric Approach to Solve Inverse Kinematics -- 4.2.4 An Example of a Geometric Algorithm -- 4.2.5 Puma Robot Inverse Kinematics Algorithms -- 4.3 Canonical Subproblems for Inverse Kinematics -- 4.3.1 A Key Idea to Solve Inverse Kinematics -- 4.3.2 Paden-Kahan Subproblem One (PK1) - One Rotation -- 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT -- 4.3.2.2 PK1 Subproblem Simplification -- 4.3.3 Paden-Kahan Subproblem Two (PK2) - Two Crossing Rotations -- 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT -- 4.3.4 Paden-Kahan Subproblem Three (PK3) - Rotation to a Distance -- 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT -- 4.3.4.2 PK3 Subproblem Simplification -- 4.3.5 Pardos-Gotor Subproblem One (PG1) - One Translation 4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT -- 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE -- 4.3.6 Pardos-Gotor Subproblem Two (PG2) - Two Crossing Translations -- 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT -- 4.3.7 Pardos-Gotor Subproblem Three (PG3) - Translation to a Distance -- 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT -- 4.3.8 Pardos-Gotor Subproblem Four (PG4) - Two Parallel Rotations -- 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT -- 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE -- 4.3.9 Pardos-Gotor Subproblem Five (PG5) - Rotation of a Line or Plane -- 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE -- 4.3.10 Pardos-Gotor Subproblem Six (PG6) - Two Skewed Rotations -- 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT -- 4.3.11 Pardos-Gotor Subproblem Seven (PG7) - Three Rotations to a Point -- 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT -- 4.3.12 Pardos-Gotor Subproblem Eight (PG8) - Three Rotations to A Pose -- 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM -- 4.4 Product of Exponentials Approach -- 4.4.1 General Solution to Inverse Kinematics -- 4.4.2 Puma Robots (e.g., ABB IRB120) -- 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition -- 4.4.2.2 First Algorithm for ABB IRB120 IK "PK3+PK2+PK2+PK1" -- 4.4.2.3 Second Algorithm for ABB IRB120 IK "PG7+PK2+PK1" -- 4.4.2.4 Third Algorithm for ABB IRB120 IK "PG5+PG4+PK2+PK1" -- 4.4.2.5 Fourth Algorithm for ABB IRB120 IK "PG5+PG4+PG6+PK1" -- 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK. 4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK -- 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms -- 4.4.2.9 RST Robotics System Toolbox™ -- 4.4.2.10 ST24R Screw Theory Toolbox for Robotics -- 4.4.3 Puma Robots (e.g., ABB IRB120) "Tool-Up." -- 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 "Tool-Up" Problem Definition -- 4.4.3.2 First Algorithm for ABB IRB120 "Tool-Up" IK "PG7+PG6+PK1" -- 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) -- 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition -- 4.4.4.2 First Algorithm for ABB IRB1600 IK "PG7+PG6+PK1" -- 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) -- 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition -- 4.4.5.2 First Algorithm for ABB IRB6620LX IK "PG1+PG4+PG6+PK1" -- 4.4.6 Scara Robots (e.g., ABB IRB910SC) -- 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition -- 4.4.6.2 First Algorithm for ABB IRB910SC IK "PG1+PG4+PK1" -- 4.4.6.3 Second Algorithm for ABB IRB910SC IK "PG1+PK3+PK1+PK1" -- 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation -- 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition -- 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK "PG5+PG3+PK1+PG8" -- 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation -- 4.4.8 Redundant Robots (e.g., KUKA IIWA) -- 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition -- 4.4.8.2 First Algorithm for KUKA IIWA IK "PK1+PK3+PK2+PK2+PK2+PK1" -- 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation -- 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 4.5 Summary -- Notes -- Chapter 5: Differential Kinematics -- 5.1 Problem Statement in Robotics -- 5.2 The Analytic Jacobian -- 5.2.1 A Traditional Description 5.2.2 Analytic Jacobian to Forward Differential Kinematics -- 5.2.3 Analytic Jacobian for Inverse Differential Kinematics -- 5.2.4 Scara Robot (e.g., ABB IRB910SC) -- 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian -- 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian -- 5.2.5 Puma Robot (e.g., ABB IRB120) -- 5.3 The Geometric Jacobian -- 5.3.1 Robot Spatial Geometric Jacobian -- 5.3.2 The Classical Adjoint Transformation (Ad) -- 5.3.3 Twist Velocity Concept -- 5.3.4 Trajectory Generation -- 5.3.5 Robot Tool Geometric Jacobian -- 5.3.6 Link Spatial and Link Tool Geometric Jacobian -- 5.3.7 The New Adjoint Transformation ( A ij) -- 5.3.8 General Solution to Differential Kinematics -- 5.3.8.1 The Kinematics Mapping -- 5.3.8.2 The Geometric Forward Differential Kinematics -- 5.3.8.3 The Geometric Inverse Differential Kinematics -- 5.3.9 Puma Robots (e.g., ABB IRB120) -- 5.3.9.1 Geometric Jacobian by Definition -- 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian -- 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.10 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) -- 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) -- 5.3.13 Scara Robots (e.g., ABB IRB910SC) -- 5.3.13.1 Geometric Jacobian by Inspection -- 5.3.13.2 Geometric Jacobian by Definition -- 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian -- 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 5.3.15 Redundant Robots (e.g., KUKA IIWA) -- 5.4 Summary -- Notes -- Chapter 6: Inverse Dynamics -- 6.1 Problem Statement in Robotics -- 6.2 The Lagrange Characterization -- 6.2.1 General Non-Recursive Solution to Inverse Dynamics -- 6.2.2 Puma Robots (e.g., ABB IRB120) -- 6.2.3 Puma Robots (e.g., ABB IRB120) "Tool-Up" 6.2.4 Bending Backwards Robots (e.g., ABB IRB1600) |
ctrlnum | (ZDB-30-PQE)EBC6789953 (ZDB-30-PAD)EBC6789953 (ZDB-89-EBL)EBL6789953 (OCoLC)1283849756 (DE-599)BVBBV048220978 |
discipline | Informatik Fertigungstechnik |
discipline_str_mv | Informatik Fertigungstechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11084nmm a2200481zc 4500</leader><controlfield tag="001">BV048220978</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240220 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000481563</subfield><subfield code="9">978-1-00-048156-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003216858</subfield><subfield code="9">978-1-003-21685-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6789953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6789953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6789953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1283849756</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048220978</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">FER 980</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 850</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pardos-Gotor, Jose M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1267031565</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Screw theory in robotics</subfield><subfield code="b">an illustrated and practicable introduction to modern mechanics</subfield><subfield code="c">Jose M. Pardos-Gotor</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxv, 284 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- List of Abbreviations -- Author -- Introduction -- Chapter 1: Introduction -- 1.1 Motivation -- 1.1.1 A Historical Quest! -- 1.1.2 A Hundred Years of Menacing Robots! -- 1.1.3 A Century of Helping Robots! -- 1.1.4 And Only 50 Years of Commercial Robots! -- 1.1.5 The Mathematical Complexity of Robotics -- 1.1.6 Here Comes Screw Theory in Robotics -- 1.1.7 The Future of Robotics -- 1.2 About This Book -- 1.3 Preview -- 1.3.1 Outline -- 1.3.2 Chapter 1: Introduction -- 1.3.3 Chapter 2: Mathematical Tools -- 1.3.4 Chapter 3: Forward Kinematics -- 1.3.5 Chapter 4: Inverse Kinematics -- 1.3.6 Chapter 5: Differential Kinematics -- 1.3.7 Chapter 6: Inverse Dynamics -- 1.3.8 Chapter 7: Trajectory Generation -- 1.3.9 Chapter 8: Robotics Simulation -- 1.3.10 Chapter 9: Conclusions -- 1.4 Audience -- Further Reading -- Note -- Chapter 2: Mathematical Tools -- 2.1 Rigid Body Motion -- 2.2 Homogeneous Representation -- 2.2.1 Standard Rigid Body Motion -- 2.2.2 Homogeneous Basic Transformations -- 2.2.3 Motion Composition in the SPATIAL "S" Reference System -- 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems -- 2.2.5 Geometrical Interpretation -- 2.2.6 Exercise: Homogeneous Rotation -- 2.2.7 Exercise: Homogeneous Rotation Plus Translation -- 2.3 Exponential Representation -- 2.3.1 Modern Rigid Body Motion -- 2.3.2 Screw Rotation (Orientation) -- 2.3.3 Rigid Body Motion TWIST -- 2.3.4 Rigid Body Force WRENCH -- 2.3.5 Exponential Coordinates for a SCREW Motion -- 2.3.6 Exercise: Exponential Rotation -- 2.3.7 Exercise: Exponential Rotation Plus Translation -- 2.4 Summary -- Notes -- Chapter 3: Forward Kinematics -- 3.1 Problem Statement in Robotics -- 3.1.1 Kinematics Concept -- 3.1.2 Kinematics Mathematical Approach</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.3 Forward Kinematics (FK) -- 3.2 Denavit-Hartenberg Convention (DH) -- 3.2.1 Kinematics Treatment -- 3.2.2 DH FK Homogeneous Matrix Product -- 3.2.3 Puma Robots (e.g., ABB IRB120) -- 3.3 Product of Exponentials Formulation -- 3.3.1 A New Kinematics Treatment -- 3.3.2 General Solution to Forward Kinematics -- 3.3.3 Puma Robots (e.g., ABB IRB120) -- 3.3.4 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) -- 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) -- 3.3.7 Scara Robots (e.g., ABB IRB910SC) -- 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 3.3.9 Redundant Robots (e.g., KUKA IIWA) -- 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 3.4 Summary -- Notes -- Chapter 4: Inverse Kinematics -- 4.1 Problem Statement in Robotics and Analytical Difficulty -- 4.1.1 Kinematics Concept -- 4.1.2 Inverse Kinematics Mathematical Approach -- 4.1.3 Analytical Difficulty to Solve Inverse Kinematics -- 4.2 Numeric vs. Geometric Solutions -- 4.2.1 A Numeric Approach to Solve Inverse Kinematics -- 4.2.2 An Example of a Numeric Algorithm -- 4.2.3 A Geometric Approach to Solve Inverse Kinematics -- 4.2.4 An Example of a Geometric Algorithm -- 4.2.5 Puma Robot Inverse Kinematics Algorithms -- 4.3 Canonical Subproblems for Inverse Kinematics -- 4.3.1 A Key Idea to Solve Inverse Kinematics -- 4.3.2 Paden-Kahan Subproblem One (PK1) - One Rotation -- 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT -- 4.3.2.2 PK1 Subproblem Simplification -- 4.3.3 Paden-Kahan Subproblem Two (PK2) - Two Crossing Rotations -- 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT -- 4.3.4 Paden-Kahan Subproblem Three (PK3) - Rotation to a Distance -- 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT -- 4.3.4.2 PK3 Subproblem Simplification -- 4.3.5 Pardos-Gotor Subproblem One (PG1) - One Translation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT -- 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE -- 4.3.6 Pardos-Gotor Subproblem Two (PG2) - Two Crossing Translations -- 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT -- 4.3.7 Pardos-Gotor Subproblem Three (PG3) - Translation to a Distance -- 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT -- 4.3.8 Pardos-Gotor Subproblem Four (PG4) - Two Parallel Rotations -- 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT -- 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE -- 4.3.9 Pardos-Gotor Subproblem Five (PG5) - Rotation of a Line or Plane -- 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE -- 4.3.10 Pardos-Gotor Subproblem Six (PG6) - Two Skewed Rotations -- 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT -- 4.3.11 Pardos-Gotor Subproblem Seven (PG7) - Three Rotations to a Point -- 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT -- 4.3.12 Pardos-Gotor Subproblem Eight (PG8) - Three Rotations to A Pose -- 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM -- 4.4 Product of Exponentials Approach -- 4.4.1 General Solution to Inverse Kinematics -- 4.4.2 Puma Robots (e.g., ABB IRB120) -- 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition -- 4.4.2.2 First Algorithm for ABB IRB120 IK "PK3+PK2+PK2+PK1" -- 4.4.2.3 Second Algorithm for ABB IRB120 IK "PG7+PK2+PK1" -- 4.4.2.4 Third Algorithm for ABB IRB120 IK "PG5+PG4+PK2+PK1" -- 4.4.2.5 Fourth Algorithm for ABB IRB120 IK "PG5+PG4+PG6+PK1" -- 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK -- 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms -- 4.4.2.9 RST Robotics System Toolbox™ -- 4.4.2.10 ST24R Screw Theory Toolbox for Robotics -- 4.4.3 Puma Robots (e.g., ABB IRB120) "Tool-Up." -- 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 "Tool-Up" Problem Definition -- 4.4.3.2 First Algorithm for ABB IRB120 "Tool-Up" IK "PG7+PG6+PK1" -- 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) -- 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition -- 4.4.4.2 First Algorithm for ABB IRB1600 IK "PG7+PG6+PK1" -- 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) -- 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition -- 4.4.5.2 First Algorithm for ABB IRB6620LX IK "PG1+PG4+PG6+PK1" -- 4.4.6 Scara Robots (e.g., ABB IRB910SC) -- 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition -- 4.4.6.2 First Algorithm for ABB IRB910SC IK "PG1+PG4+PK1" -- 4.4.6.3 Second Algorithm for ABB IRB910SC IK "PG1+PK3+PK1+PK1" -- 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation -- 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition -- 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK "PG5+PG3+PK1+PG8" -- 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation -- 4.4.8 Redundant Robots (e.g., KUKA IIWA) -- 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition -- 4.4.8.2 First Algorithm for KUKA IIWA IK "PK1+PK3+PK2+PK2+PK2+PK1" -- 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation -- 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 4.5 Summary -- Notes -- Chapter 5: Differential Kinematics -- 5.1 Problem Statement in Robotics -- 5.2 The Analytic Jacobian -- 5.2.1 A Traditional Description</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.2 Analytic Jacobian to Forward Differential Kinematics -- 5.2.3 Analytic Jacobian for Inverse Differential Kinematics -- 5.2.4 Scara Robot (e.g., ABB IRB910SC) -- 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian -- 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian -- 5.2.5 Puma Robot (e.g., ABB IRB120) -- 5.3 The Geometric Jacobian -- 5.3.1 Robot Spatial Geometric Jacobian -- 5.3.2 The Classical Adjoint Transformation (Ad) -- 5.3.3 Twist Velocity Concept -- 5.3.4 Trajectory Generation -- 5.3.5 Robot Tool Geometric Jacobian -- 5.3.6 Link Spatial and Link Tool Geometric Jacobian -- 5.3.7 The New Adjoint Transformation ( A ij) -- 5.3.8 General Solution to Differential Kinematics -- 5.3.8.1 The Kinematics Mapping -- 5.3.8.2 The Geometric Forward Differential Kinematics -- 5.3.8.3 The Geometric Inverse Differential Kinematics -- 5.3.9 Puma Robots (e.g., ABB IRB120) -- 5.3.9.1 Geometric Jacobian by Definition -- 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian -- 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.10 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) -- 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) -- 5.3.13 Scara Robots (e.g., ABB IRB910SC) -- 5.3.13.1 Geometric Jacobian by Inspection -- 5.3.13.2 Geometric Jacobian by Definition -- 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian -- 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 5.3.15 Redundant Robots (e.g., KUKA IIWA) -- 5.4 Summary -- Notes -- Chapter 6: Inverse Dynamics -- 6.1 Problem Statement in Robotics -- 6.2 The Lagrange Characterization -- 6.2.1 General Non-Recursive Solution to Inverse Dynamics -- 6.2.2 Puma Robots (e.g., ABB IRB120) -- 6.2.3 Puma Robots (e.g., ABB IRB120) "Tool-Up"</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.4 Bending Backwards Robots (e.g., ABB IRB1600)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Pardos-Gotor, Jose M.</subfield><subfield code="t">Screw Theory in Robotics</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-032-10736-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-10747-9</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601717</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6789953</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048220978 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781000481563 9781003216858 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601717 |
oclc_num | 1283849756 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xxv, 284 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spelling | Pardos-Gotor, Jose M. Verfasser (DE-588)1267031565 aut Screw theory in robotics an illustrated and practicable introduction to modern mechanics Jose M. Pardos-Gotor First edition Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (xxv, 284 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- List of Abbreviations -- Author -- Introduction -- Chapter 1: Introduction -- 1.1 Motivation -- 1.1.1 A Historical Quest! -- 1.1.2 A Hundred Years of Menacing Robots! -- 1.1.3 A Century of Helping Robots! -- 1.1.4 And Only 50 Years of Commercial Robots! -- 1.1.5 The Mathematical Complexity of Robotics -- 1.1.6 Here Comes Screw Theory in Robotics -- 1.1.7 The Future of Robotics -- 1.2 About This Book -- 1.3 Preview -- 1.3.1 Outline -- 1.3.2 Chapter 1: Introduction -- 1.3.3 Chapter 2: Mathematical Tools -- 1.3.4 Chapter 3: Forward Kinematics -- 1.3.5 Chapter 4: Inverse Kinematics -- 1.3.6 Chapter 5: Differential Kinematics -- 1.3.7 Chapter 6: Inverse Dynamics -- 1.3.8 Chapter 7: Trajectory Generation -- 1.3.9 Chapter 8: Robotics Simulation -- 1.3.10 Chapter 9: Conclusions -- 1.4 Audience -- Further Reading -- Note -- Chapter 2: Mathematical Tools -- 2.1 Rigid Body Motion -- 2.2 Homogeneous Representation -- 2.2.1 Standard Rigid Body Motion -- 2.2.2 Homogeneous Basic Transformations -- 2.2.3 Motion Composition in the SPATIAL "S" Reference System -- 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems -- 2.2.5 Geometrical Interpretation -- 2.2.6 Exercise: Homogeneous Rotation -- 2.2.7 Exercise: Homogeneous Rotation Plus Translation -- 2.3 Exponential Representation -- 2.3.1 Modern Rigid Body Motion -- 2.3.2 Screw Rotation (Orientation) -- 2.3.3 Rigid Body Motion TWIST -- 2.3.4 Rigid Body Force WRENCH -- 2.3.5 Exponential Coordinates for a SCREW Motion -- 2.3.6 Exercise: Exponential Rotation -- 2.3.7 Exercise: Exponential Rotation Plus Translation -- 2.4 Summary -- Notes -- Chapter 3: Forward Kinematics -- 3.1 Problem Statement in Robotics -- 3.1.1 Kinematics Concept -- 3.1.2 Kinematics Mathematical Approach 3.1.3 Forward Kinematics (FK) -- 3.2 Denavit-Hartenberg Convention (DH) -- 3.2.1 Kinematics Treatment -- 3.2.2 DH FK Homogeneous Matrix Product -- 3.2.3 Puma Robots (e.g., ABB IRB120) -- 3.3 Product of Exponentials Formulation -- 3.3.1 A New Kinematics Treatment -- 3.3.2 General Solution to Forward Kinematics -- 3.3.3 Puma Robots (e.g., ABB IRB120) -- 3.3.4 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) -- 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) -- 3.3.7 Scara Robots (e.g., ABB IRB910SC) -- 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 3.3.9 Redundant Robots (e.g., KUKA IIWA) -- 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 3.4 Summary -- Notes -- Chapter 4: Inverse Kinematics -- 4.1 Problem Statement in Robotics and Analytical Difficulty -- 4.1.1 Kinematics Concept -- 4.1.2 Inverse Kinematics Mathematical Approach -- 4.1.3 Analytical Difficulty to Solve Inverse Kinematics -- 4.2 Numeric vs. Geometric Solutions -- 4.2.1 A Numeric Approach to Solve Inverse Kinematics -- 4.2.2 An Example of a Numeric Algorithm -- 4.2.3 A Geometric Approach to Solve Inverse Kinematics -- 4.2.4 An Example of a Geometric Algorithm -- 4.2.5 Puma Robot Inverse Kinematics Algorithms -- 4.3 Canonical Subproblems for Inverse Kinematics -- 4.3.1 A Key Idea to Solve Inverse Kinematics -- 4.3.2 Paden-Kahan Subproblem One (PK1) - One Rotation -- 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT -- 4.3.2.2 PK1 Subproblem Simplification -- 4.3.3 Paden-Kahan Subproblem Two (PK2) - Two Crossing Rotations -- 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT -- 4.3.4 Paden-Kahan Subproblem Three (PK3) - Rotation to a Distance -- 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT -- 4.3.4.2 PK3 Subproblem Simplification -- 4.3.5 Pardos-Gotor Subproblem One (PG1) - One Translation 4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT -- 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE -- 4.3.6 Pardos-Gotor Subproblem Two (PG2) - Two Crossing Translations -- 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT -- 4.3.7 Pardos-Gotor Subproblem Three (PG3) - Translation to a Distance -- 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT -- 4.3.8 Pardos-Gotor Subproblem Four (PG4) - Two Parallel Rotations -- 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT -- 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE -- 4.3.9 Pardos-Gotor Subproblem Five (PG5) - Rotation of a Line or Plane -- 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE -- 4.3.10 Pardos-Gotor Subproblem Six (PG6) - Two Skewed Rotations -- 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT -- 4.3.11 Pardos-Gotor Subproblem Seven (PG7) - Three Rotations to a Point -- 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT -- 4.3.12 Pardos-Gotor Subproblem Eight (PG8) - Three Rotations to A Pose -- 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM -- 4.4 Product of Exponentials Approach -- 4.4.1 General Solution to Inverse Kinematics -- 4.4.2 Puma Robots (e.g., ABB IRB120) -- 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition -- 4.4.2.2 First Algorithm for ABB IRB120 IK "PK3+PK2+PK2+PK1" -- 4.4.2.3 Second Algorithm for ABB IRB120 IK "PG7+PK2+PK1" -- 4.4.2.4 Third Algorithm for ABB IRB120 IK "PG5+PG4+PK2+PK1" -- 4.4.2.5 Fourth Algorithm for ABB IRB120 IK "PG5+PG4+PG6+PK1" -- 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK. 4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK -- 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms -- 4.4.2.9 RST Robotics System Toolbox™ -- 4.4.2.10 ST24R Screw Theory Toolbox for Robotics -- 4.4.3 Puma Robots (e.g., ABB IRB120) "Tool-Up." -- 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 "Tool-Up" Problem Definition -- 4.4.3.2 First Algorithm for ABB IRB120 "Tool-Up" IK "PG7+PG6+PK1" -- 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) -- 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition -- 4.4.4.2 First Algorithm for ABB IRB1600 IK "PG7+PG6+PK1" -- 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) -- 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition -- 4.4.5.2 First Algorithm for ABB IRB6620LX IK "PG1+PG4+PG6+PK1" -- 4.4.6 Scara Robots (e.g., ABB IRB910SC) -- 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition -- 4.4.6.2 First Algorithm for ABB IRB910SC IK "PG1+PG4+PK1" -- 4.4.6.3 Second Algorithm for ABB IRB910SC IK "PG1+PK3+PK1+PK1" -- 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation -- 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition -- 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK "PG5+PG3+PK1+PG8" -- 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation -- 4.4.8 Redundant Robots (e.g., KUKA IIWA) -- 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition -- 4.4.8.2 First Algorithm for KUKA IIWA IK "PK1+PK3+PK2+PK2+PK2+PK1" -- 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation -- 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 4.5 Summary -- Notes -- Chapter 5: Differential Kinematics -- 5.1 Problem Statement in Robotics -- 5.2 The Analytic Jacobian -- 5.2.1 A Traditional Description 5.2.2 Analytic Jacobian to Forward Differential Kinematics -- 5.2.3 Analytic Jacobian for Inverse Differential Kinematics -- 5.2.4 Scara Robot (e.g., ABB IRB910SC) -- 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian -- 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian -- 5.2.5 Puma Robot (e.g., ABB IRB120) -- 5.3 The Geometric Jacobian -- 5.3.1 Robot Spatial Geometric Jacobian -- 5.3.2 The Classical Adjoint Transformation (Ad) -- 5.3.3 Twist Velocity Concept -- 5.3.4 Trajectory Generation -- 5.3.5 Robot Tool Geometric Jacobian -- 5.3.6 Link Spatial and Link Tool Geometric Jacobian -- 5.3.7 The New Adjoint Transformation ( A ij) -- 5.3.8 General Solution to Differential Kinematics -- 5.3.8.1 The Kinematics Mapping -- 5.3.8.2 The Geometric Forward Differential Kinematics -- 5.3.8.3 The Geometric Inverse Differential Kinematics -- 5.3.9 Puma Robots (e.g., ABB IRB120) -- 5.3.9.1 Geometric Jacobian by Definition -- 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian -- 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.10 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) -- 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) -- 5.3.13 Scara Robots (e.g., ABB IRB910SC) -- 5.3.13.1 Geometric Jacobian by Inspection -- 5.3.13.2 Geometric Jacobian by Definition -- 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian -- 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 5.3.15 Redundant Robots (e.g., KUKA IIWA) -- 5.4 Summary -- Notes -- Chapter 6: Inverse Dynamics -- 6.1 Problem Statement in Robotics -- 6.2 The Lagrange Characterization -- 6.2.1 General Non-Recursive Solution to Inverse Dynamics -- 6.2.2 Puma Robots (e.g., ABB IRB120) -- 6.2.3 Puma Robots (e.g., ABB IRB120) "Tool-Up" 6.2.4 Bending Backwards Robots (e.g., ABB IRB1600) Erscheint auch als Pardos-Gotor, Jose M. Screw Theory in Robotics Milton : Taylor & Francis Group,c2021 Druck-Ausgabe, Hardcover 978-1-032-10736-3 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-10747-9 |
spellingShingle | Pardos-Gotor, Jose M. Screw theory in robotics an illustrated and practicable introduction to modern mechanics Cover -- Half Title -- Title Page -- Copyright Page -- Dedication -- Table of Contents -- Preface -- Acknowledgments -- List of Abbreviations -- Author -- Introduction -- Chapter 1: Introduction -- 1.1 Motivation -- 1.1.1 A Historical Quest! -- 1.1.2 A Hundred Years of Menacing Robots! -- 1.1.3 A Century of Helping Robots! -- 1.1.4 And Only 50 Years of Commercial Robots! -- 1.1.5 The Mathematical Complexity of Robotics -- 1.1.6 Here Comes Screw Theory in Robotics -- 1.1.7 The Future of Robotics -- 1.2 About This Book -- 1.3 Preview -- 1.3.1 Outline -- 1.3.2 Chapter 1: Introduction -- 1.3.3 Chapter 2: Mathematical Tools -- 1.3.4 Chapter 3: Forward Kinematics -- 1.3.5 Chapter 4: Inverse Kinematics -- 1.3.6 Chapter 5: Differential Kinematics -- 1.3.7 Chapter 6: Inverse Dynamics -- 1.3.8 Chapter 7: Trajectory Generation -- 1.3.9 Chapter 8: Robotics Simulation -- 1.3.10 Chapter 9: Conclusions -- 1.4 Audience -- Further Reading -- Note -- Chapter 2: Mathematical Tools -- 2.1 Rigid Body Motion -- 2.2 Homogeneous Representation -- 2.2.1 Standard Rigid Body Motion -- 2.2.2 Homogeneous Basic Transformations -- 2.2.3 Motion Composition in the SPATIAL "S" Reference System -- 2.2.4 Motion Composition with STATIONARY and MOBILE Coordinate Systems -- 2.2.5 Geometrical Interpretation -- 2.2.6 Exercise: Homogeneous Rotation -- 2.2.7 Exercise: Homogeneous Rotation Plus Translation -- 2.3 Exponential Representation -- 2.3.1 Modern Rigid Body Motion -- 2.3.2 Screw Rotation (Orientation) -- 2.3.3 Rigid Body Motion TWIST -- 2.3.4 Rigid Body Force WRENCH -- 2.3.5 Exponential Coordinates for a SCREW Motion -- 2.3.6 Exercise: Exponential Rotation -- 2.3.7 Exercise: Exponential Rotation Plus Translation -- 2.4 Summary -- Notes -- Chapter 3: Forward Kinematics -- 3.1 Problem Statement in Robotics -- 3.1.1 Kinematics Concept -- 3.1.2 Kinematics Mathematical Approach 3.1.3 Forward Kinematics (FK) -- 3.2 Denavit-Hartenberg Convention (DH) -- 3.2.1 Kinematics Treatment -- 3.2.2 DH FK Homogeneous Matrix Product -- 3.2.3 Puma Robots (e.g., ABB IRB120) -- 3.3 Product of Exponentials Formulation -- 3.3.1 A New Kinematics Treatment -- 3.3.2 General Solution to Forward Kinematics -- 3.3.3 Puma Robots (e.g., ABB IRB120) -- 3.3.4 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 3.3.5 Bending Backwards Robots (e.g., ABB IRB1600) -- 3.3.6 Gantry Robots (e.g., ABB IRB6620LX) -- 3.3.7 Scara Robots (e.g., ABB IRB910SC) -- 3.3.8 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 3.3.9 Redundant Robots (e.g., KUKA IIWA) -- 3.3.10 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 3.4 Summary -- Notes -- Chapter 4: Inverse Kinematics -- 4.1 Problem Statement in Robotics and Analytical Difficulty -- 4.1.1 Kinematics Concept -- 4.1.2 Inverse Kinematics Mathematical Approach -- 4.1.3 Analytical Difficulty to Solve Inverse Kinematics -- 4.2 Numeric vs. Geometric Solutions -- 4.2.1 A Numeric Approach to Solve Inverse Kinematics -- 4.2.2 An Example of a Numeric Algorithm -- 4.2.3 A Geometric Approach to Solve Inverse Kinematics -- 4.2.4 An Example of a Geometric Algorithm -- 4.2.5 Puma Robot Inverse Kinematics Algorithms -- 4.3 Canonical Subproblems for Inverse Kinematics -- 4.3.1 A Key Idea to Solve Inverse Kinematics -- 4.3.2 Paden-Kahan Subproblem One (PK1) - One Rotation -- 4.3.2.1 ROTATION around ONE Single AXIS Applied to a POINT -- 4.3.2.2 PK1 Subproblem Simplification -- 4.3.3 Paden-Kahan Subproblem Two (PK2) - Two Crossing Rotations -- 4.3.3.1 ROTATION around TWO Subsequent CROSSING AXES Applied to a POINT -- 4.3.4 Paden-Kahan Subproblem Three (PK3) - Rotation to a Distance -- 4.3.4.1 ROTATION at a Given DISTANCE Applied to a POINT -- 4.3.4.2 PK3 Subproblem Simplification -- 4.3.5 Pardos-Gotor Subproblem One (PG1) - One Translation 4.3.5.1 TRANSLATION along a SINGLE AXIS Applied to a POINT -- 4.3.5.2 PG1 Extension TRANSLATION along a SINGLE AXIS Applied to a PLANE -- 4.3.6 Pardos-Gotor Subproblem Two (PG2) - Two Crossing Translations -- 4.3.6.1 TRANSLATION along Two Subsequent CROSSING AXES Applied to a POINT -- 4.3.7 Pardos-Gotor Subproblem Three (PG3) - Translation to a Distance -- 4.3.7.1 TRANSLATION to a Given DISTANCE Applied to a POINT -- 4.3.8 Pardos-Gotor Subproblem Four (PG4) - Two Parallel Rotations -- 4.3.8.1 ROTATION around TWO Subsequent PARALLEL AXES Applied to a POINT -- 4.3.8.2 PG4 Extension ROTATION around TWO PARALLEL AXES Applied to a LINE -- 4.3.9 Pardos-Gotor Subproblem Five (PG5) - Rotation of a Line or Plane -- 4.3.9.1 ROTATION around ONE Single AXIS Applied to a Perpendicular LINE or PLANE -- 4.3.10 Pardos-Gotor Subproblem Six (PG6) - Two Skewed Rotations -- 4.3.10.1 ROTATION around TWO Subsequent SKEW AXES Applied to a POINT -- 4.3.11 Pardos-Gotor Subproblem Seven (PG7) - Three Rotations to a Point -- 4.3.11.1 ROTATION around THREE Subsequent AXES (ONE SKEW + TWO PARALLEL) Applied to a POINT -- 4.3.12 Pardos-Gotor Subproblem Eight (PG8) - Three Rotations to A Pose -- 4.3.12.1 ROTATION around THREE Subsequent PARALLEL AXES Applied to a POSE (Position Plus Orientation) or COORDINATE SYSTEM -- 4.4 Product of Exponentials Approach -- 4.4.1 General Solution to Inverse Kinematics -- 4.4.2 Puma Robots (e.g., ABB IRB120) -- 4.4.2.1 Inverse Kinematics Puma Robot ABB IRB120 Problem Definition -- 4.4.2.2 First Algorithm for ABB IRB120 IK "PK3+PK2+PK2+PK1" -- 4.4.2.3 Second Algorithm for ABB IRB120 IK "PG7+PK2+PK1" -- 4.4.2.4 Third Algorithm for ABB IRB120 IK "PG5+PG4+PK2+PK1" -- 4.4.2.5 Fourth Algorithm for ABB IRB120 IK "PG5+PG4+PG6+PK1" -- 4.4.2.6 Comparison between the Four Algorithms for ABB IRB120 IK. 4.4.2.7 Comment on the Implementation of the Algorithms for ABB IRB120 IK -- 4.4.2.8 Performance Contrast for Both Numeric and Geometric ABB IRB120 IK Algorithms -- 4.4.2.9 RST Robotics System Toolbox™ -- 4.4.2.10 ST24R Screw Theory Toolbox for Robotics -- 4.4.3 Puma Robots (e.g., ABB IRB120) "Tool-Up." -- 4.4.3.1 Inverse Kinematics PUMA ABB IRB120 "Tool-Up" Problem Definition -- 4.4.3.2 First Algorithm for ABB IRB120 "Tool-Up" IK "PG7+PG6+PK1" -- 4.4.4 Bending Backwards Robots (e.g., ABB IRB1600) -- 4.4.4.1 Inverse Kinematics ABB IRB1600 Problem Definition -- 4.4.4.2 First Algorithm for ABB IRB1600 IK "PG7+PG6+PK1" -- 4.4.5 Gantry Robots (e.g., ABB IRB6620LX) -- 4.4.5.1 Inverse Kinematics ABB IRB6620LX Problem Definition -- 4.4.5.2 First Algorithm for ABB IRB6620LX IK "PG1+PG4+PG6+PK1" -- 4.4.6 Scara Robots (e.g., ABB IRB910SC) -- 4.4.6.1 Inverse Kinematics ABB IRB910SC Problem Definition -- 4.4.6.2 First Algorithm for ABB IRB910SC IK "PG1+PG4+PK1" -- 4.4.6.3 Second Algorithm for ABB IRB910SC IK "PG1+PK3+PK1+PK1" -- 4.4.6.4 Comments on the SCARA Robot (ABB IRB910SC) IK Implementation -- 4.4.7 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 4.4.7.1 Inverse Kinematics UNIVERSAL UR16e Problem Definition -- 4.4.7.2 First Algorithm for UNIVERSAL UR16e IK "PG5+PG3+PK1+PG8" -- 4.4.7.3 Comments on the UNIVERSAL UR16e IK Complete Solution Implementation -- 4.4.8 Redundant Robots (e.g., KUKA IIWA) -- 4.4.8.1 Inverse Kinematics KUKA IIWA Problem Definition -- 4.4.8.2 First Algorithm for KUKA IIWA IK "PK1+PK3+PK2+PK2+PK2+PK1" -- 4.4.8.3 Comments on the KUKA IIWA IK Complete Solution Implementation -- 4.4.9 Many DoF Robots (e.g., RH0 UC3M Humanoid) -- 4.5 Summary -- Notes -- Chapter 5: Differential Kinematics -- 5.1 Problem Statement in Robotics -- 5.2 The Analytic Jacobian -- 5.2.1 A Traditional Description 5.2.2 Analytic Jacobian to Forward Differential Kinematics -- 5.2.3 Analytic Jacobian for Inverse Differential Kinematics -- 5.2.4 Scara Robot (e.g., ABB IRB910SC) -- 5.2.4.1 Forward Differential Kinematics with Analytic Jacobian -- 5.2.4.2 Inverse Differential Kinematics with Analytic Jacobian -- 5.2.5 Puma Robot (e.g., ABB IRB120) -- 5.3 The Geometric Jacobian -- 5.3.1 Robot Spatial Geometric Jacobian -- 5.3.2 The Classical Adjoint Transformation (Ad) -- 5.3.3 Twist Velocity Concept -- 5.3.4 Trajectory Generation -- 5.3.5 Robot Tool Geometric Jacobian -- 5.3.6 Link Spatial and Link Tool Geometric Jacobian -- 5.3.7 The New Adjoint Transformation ( A ij) -- 5.3.8 General Solution to Differential Kinematics -- 5.3.8.1 The Kinematics Mapping -- 5.3.8.2 The Geometric Forward Differential Kinematics -- 5.3.8.3 The Geometric Inverse Differential Kinematics -- 5.3.9 Puma Robots (e.g., ABB IRB120) -- 5.3.9.1 Geometric Jacobian by Definition -- 5.3.9.2 Forward Differential Kinematics with Geometric Jacobian -- 5.3.9.3 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.10 Puma Robots (e.g., ABB IRB120) "Tool-Up" -- 5.3.11 Bending Backwards Robots (e.g., ABB IRB1600) -- 5.3.12 Gantry Robots (e.g., ABB IRB6620LX) -- 5.3.13 Scara Robots (e.g., ABB IRB910SC) -- 5.3.13.1 Geometric Jacobian by Inspection -- 5.3.13.2 Geometric Jacobian by Definition -- 5.3.13.3 Forward Differential Kinematics with Geometric Jacobian -- 5.3.13.4 Inverse Differential Kinematics with Geometric Jacobian -- 5.3.14 Collaborative Robots (e.g., UNIVERSAL UR16e) -- 5.3.15 Redundant Robots (e.g., KUKA IIWA) -- 5.4 Summary -- Notes -- Chapter 6: Inverse Dynamics -- 6.1 Problem Statement in Robotics -- 6.2 The Lagrange Characterization -- 6.2.1 General Non-Recursive Solution to Inverse Dynamics -- 6.2.2 Puma Robots (e.g., ABB IRB120) -- 6.2.3 Puma Robots (e.g., ABB IRB120) "Tool-Up" 6.2.4 Bending Backwards Robots (e.g., ABB IRB1600) |
title | Screw theory in robotics an illustrated and practicable introduction to modern mechanics |
title_auth | Screw theory in robotics an illustrated and practicable introduction to modern mechanics |
title_exact_search | Screw theory in robotics an illustrated and practicable introduction to modern mechanics |
title_exact_search_txtP | Screw theory in robotics an illustrated and practicable introduction to modern mechanics |
title_full | Screw theory in robotics an illustrated and practicable introduction to modern mechanics Jose M. Pardos-Gotor |
title_fullStr | Screw theory in robotics an illustrated and practicable introduction to modern mechanics Jose M. Pardos-Gotor |
title_full_unstemmed | Screw theory in robotics an illustrated and practicable introduction to modern mechanics Jose M. Pardos-Gotor |
title_short | Screw theory in robotics |
title_sort | screw theory in robotics an illustrated and practicable introduction to modern mechanics |
title_sub | an illustrated and practicable introduction to modern mechanics |
work_keys_str_mv | AT pardosgotorjosem screwtheoryinroboticsanillustratedandpracticableintroductiontomodernmechanics |