Vibrational-Rotational Excitations in Nonlinear Molecular Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2001
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations |
Beschreibung: | 1 Online-Ressource (XIII, 355 p) |
ISBN: | 9781461513179 9781461354949 |
DOI: | 10.1007/978-1-4615-1317-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411532 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461513179 |c Online |9 978-1-4615-1317-9 | ||
020 | |a 9781461354949 |c Print |9 978-1-4613-5494-9 | ||
024 | 7 | |a 10.1007/978-1-4615-1317-9 |2 doi | |
035 | |a (OCoLC)863677848 | ||
035 | |a (DE-599)BVBBV042411532 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 539 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Ovchinnikov, A. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Vibrational-Rotational Excitations in Nonlinear Molecular Systems |c by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin |
264 | 1 | |a Boston, MA |b Springer US |c 2001 | |
300 | |a 1 Online-Ressource (XIII, 355 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations | ||
650 | 4 | |a Physics | |
650 | 4 | |a Analytical biochemistry | |
650 | 4 | |a Chemistry, Physical organic | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Atomic, Molecular, Optical and Plasma Physics | |
650 | 4 | |a Physical Chemistry | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Analytical Chemistry | |
700 | 1 | |a Erikhman, N. S. |e Sonstige |4 oth | |
700 | 1 | |a Pronin, K. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-1317-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027847025 |
Datensatz im Suchindex
_version_ | 1804153073073913856 |
---|---|
any_adam_object | |
author | Ovchinnikov, A. A. |
author_facet | Ovchinnikov, A. A. |
author_role | aut |
author_sort | Ovchinnikov, A. A. |
author_variant | a a o aa aao |
building | Verbundindex |
bvnumber | BV042411532 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863677848 (DE-599)BVBBV042411532 |
dewey-full | 539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539 |
dewey-search | 539 |
dewey-sort | 3539 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4615-1317-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02988nmm a2200481zc 4500</leader><controlfield tag="001">BV042411532</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461513179</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-1317-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461354949</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-5494-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-1317-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863677848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411532</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ovchinnikov, A. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vibrational-Rotational Excitations in Nonlinear Molecular Systems</subfield><subfield code="c">by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 355 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical biochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Physical organic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analytical Chemistry</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erikhman, N. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pronin, K. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-1317-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027847025</subfield></datafield></record></collection> |
id | DE-604.BV042411532 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:48Z |
institution | BVB |
isbn | 9781461513179 9781461354949 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027847025 |
oclc_num | 863677848 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 355 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer US |
record_format | marc |
spelling | Ovchinnikov, A. A. Verfasser aut Vibrational-Rotational Excitations in Nonlinear Molecular Systems by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin Boston, MA Springer US 2001 1 Online-Ressource (XIII, 355 p) txt rdacontent c rdamedia cr rdacarrier "If there would be no God ~ then what a staff-captain am I?" ~ said one of the characters in a novel by Dostoevskii. In a similar way we can exclaim: "If there would be no nonlinearity ~ than what physics would that be'?". Really, the most interesting and exciting effects are described by non linear equations, and vanish in the linear approximation. For example, the general theory of relativity by A.Einstein comes to mind first - one of the most beautiful physical theories, which is in fact essentially nonlinear. Next, the phase transitions crystal ~ liquid and liquid ~ gas are due to the anhar monicity of inter-particle interactions, to dissociation and infinite motion. Similarly, transitions into the superconducting state or the superftuid would be impossible with purely harmonic interaction potentials. Another bril liant achievement in nonlinear physics was the construction of a laser and the subsequent development of nonlinear optics. The latter describes the in teraction of the matter with light of super-high intensity, when multi-quanta intra-molecular transitions become essential. Last, we should note here the very beautiful mathematical theory ~ the theory of catastrophes. Its subject is the study of invariant general properties of multi-dimensional surfaces in the vicinity of bifurcation points with respect to continuous transformations Physics Analytical biochemistry Chemistry, Physical organic Computer engineering Atomic, Molecular, Optical and Plasma Physics Physical Chemistry Electrical Engineering Theoretical, Mathematical and Computational Physics Analytical Chemistry Erikhman, N. S. Sonstige oth Pronin, K. A. Sonstige oth https://doi.org/10.1007/978-1-4615-1317-9 Verlag Volltext |
spellingShingle | Ovchinnikov, A. A. Vibrational-Rotational Excitations in Nonlinear Molecular Systems Physics Analytical biochemistry Chemistry, Physical organic Computer engineering Atomic, Molecular, Optical and Plasma Physics Physical Chemistry Electrical Engineering Theoretical, Mathematical and Computational Physics Analytical Chemistry |
title | Vibrational-Rotational Excitations in Nonlinear Molecular Systems |
title_auth | Vibrational-Rotational Excitations in Nonlinear Molecular Systems |
title_exact_search | Vibrational-Rotational Excitations in Nonlinear Molecular Systems |
title_full | Vibrational-Rotational Excitations in Nonlinear Molecular Systems by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin |
title_fullStr | Vibrational-Rotational Excitations in Nonlinear Molecular Systems by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin |
title_full_unstemmed | Vibrational-Rotational Excitations in Nonlinear Molecular Systems by A. A. Ovchinnikov, N. S. Erikhman, K. A. Pronin |
title_short | Vibrational-Rotational Excitations in Nonlinear Molecular Systems |
title_sort | vibrational rotational excitations in nonlinear molecular systems |
topic | Physics Analytical biochemistry Chemistry, Physical organic Computer engineering Atomic, Molecular, Optical and Plasma Physics Physical Chemistry Electrical Engineering Theoretical, Mathematical and Computational Physics Analytical Chemistry |
topic_facet | Physics Analytical biochemistry Chemistry, Physical organic Computer engineering Atomic, Molecular, Optical and Plasma Physics Physical Chemistry Electrical Engineering Theoretical, Mathematical and Computational Physics Analytical Chemistry |
url | https://doi.org/10.1007/978-1-4615-1317-9 |
work_keys_str_mv | AT ovchinnikovaa vibrationalrotationalexcitationsinnonlinearmolecularsystems AT erikhmanns vibrationalrotationalexcitationsinnonlinearmolecularsystems AT proninka vibrationalrotationalexcitationsinnonlinearmolecularsystems |