Bridge to abstract mathematics /:
Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[Washington, DC] :
Mathematical Association of America,
©2012.
|
Schriftenreihe: | MAA textbooks.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises |
Beschreibung: | 1 online resource (xix, 232 pages) : illustrations |
Bibliographie: | Includes bibliographical references (page 223) and index. |
ISBN: | 9781614446064 1614446067 9781470453039 1470453037 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn818906408 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121121s2012 dcua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d YDXCP |d E7B |d OCLCF |d OCLCO |d OCLCQ |d OCLCO |d EBLCP |d OCLCO |d OCLCQ |d OCLCO |d DEBSZ |d OCLCQ |d OCLCO |d OCLCQ |d LOA |d OCLCO |d AZK |d OCLCQ |d AGLDB |d CNNOR |d MOR |d PIFAG |d OTZ |d MERUC |d OCLCQ |d ZCU |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCO |d JBG |d OCLCQ |d A6Q |d DKC |d OCLCQ |d ESU |d UKCRE |d AJS |d OCLCO |d CUY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d YDX | ||
019 | |a 923220306 |a 929120364 |a 960204375 |a 961491254 |a 962640464 |a 988461420 |a 991958390 |a 994989212 |a 1037927046 |a 1038694562 |a 1045466102 |a 1055358406 |a 1062991312 |a 1077263573 |a 1081250137 |a 1083560678 |a 1153545617 |a 1198812247 |a 1228607278 | ||
020 | |a 9781614446064 |q (electronic bk.) | ||
020 | |a 1614446067 |q (electronic bk.) | ||
020 | |a 9781470453039 |q (online) | ||
020 | |a 1470453037 | ||
020 | |z 9780883857793 | ||
020 | |z 0883857790 | ||
035 | |a (OCoLC)818906408 |z (OCoLC)923220306 |z (OCoLC)929120364 |z (OCoLC)960204375 |z (OCoLC)961491254 |z (OCoLC)962640464 |z (OCoLC)988461420 |z (OCoLC)991958390 |z (OCoLC)994989212 |z (OCoLC)1037927046 |z (OCoLC)1038694562 |z (OCoLC)1045466102 |z (OCoLC)1055358406 |z (OCoLC)1062991312 |z (OCoLC)1077263573 |z (OCoLC)1081250137 |z (OCoLC)1083560678 |z (OCoLC)1153545617 |z (OCoLC)1198812247 |z (OCoLC)1228607278 | ||
050 | 4 | |a QA9 | |
072 | 7 | |a MAT |x 016000 |2 bisacsh | |
072 | 7 | |a MAT |x 018000 |2 bisacsh | |
082 | 7 | |a 511.3 | |
049 | |a MAIN | ||
100 | 1 | |a Oberste-Vorth, Ralph W., |d 1959- |1 https://id.oclc.org/worldcat/entity/E39PCjMqcGxvQ4WgWJdbWH8RDq |0 http://id.loc.gov/authorities/names/no2013031151 | |
245 | 1 | 0 | |a Bridge to abstract mathematics / |c Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. |
260 | |a [Washington, DC] : |b Mathematical Association of America, |c ©2012. | ||
300 | |a 1 online resource (xix, 232 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a MAA textbooks | |
504 | |a Includes bibliographical references (page 223) and index. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements | |
505 | 8 | |a Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets | |
505 | 8 | |a Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations | |
505 | 8 | |a Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises | |
505 | 8 | |a Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises | |
520 | |a Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises | ||
650 | 0 | |a Logic, Symbolic and mathematical |v Textbooks. | |
650 | 0 | |a Mathematics |v Textbooks. | |
650 | 7 | |a MATHEMATICS |x Infinity. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Logic. |2 bisacsh | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
650 | 7 | |a Mathematics |2 fast | |
650 | 7 | |a Beweis |2 gnd |0 http://d-nb.info/gnd/4132532-1 | |
650 | 7 | |a Mathematik |2 gnd |0 http://d-nb.info/gnd/4037944-9 | |
655 | 7 | |a Textbooks |2 fast | |
700 | 1 | |a Mouzakitis, Aristides. | |
700 | 1 | |a Lawrence, Bonita A., |d 1957- |1 https://id.oclc.org/worldcat/entity/E39PCjyr99R3vwjyM3j9Kh4QMd |0 http://id.loc.gov/authorities/names/no2013031145 | |
758 | |i has work: |a Bridge to abstract mathematics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGYMFj4xhCdm6tfKDgMWym |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Oberste-Vorth, Ralph W., 1959- |t Bridge to abstract mathematics. |d [Washington, DC] : Mathematical Association of America, ©2012 |z 9780883857793 |w (OCoLC)809028598 |
830 | 0 | |a MAA textbooks. |0 http://id.loc.gov/authorities/names/no2008011989 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3934669 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551 |3 Volltext |
938 | |a YBP Library Services |b YANK |n 306451501 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL3330426 | ||
938 | |a ebrary |b EBRY |n ebr10733069 | ||
938 | |a EBSCOhost |b EBSC |n 481551 | ||
938 | |a YBP Library Services |b YANK |n 9674951 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn818906408 |
---|---|
_version_ | 1816882215564345345 |
adam_text | |
any_adam_object | |
author | Oberste-Vorth, Ralph W., 1959- |
author2 | Mouzakitis, Aristides Lawrence, Bonita A., 1957- |
author2_role | |
author2_variant | a m am b a l ba bal |
author_GND | http://id.loc.gov/authorities/names/no2013031151 http://id.loc.gov/authorities/names/no2013031145 |
author_facet | Oberste-Vorth, Ralph W., 1959- Mouzakitis, Aristides Lawrence, Bonita A., 1957- |
author_role | |
author_sort | Oberste-Vorth, Ralph W., 1959- |
author_variant | r w o v rwo rwov |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 |
callnumber-search | QA9 |
callnumber-sort | QA 19 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises |
ctrlnum | (OCoLC)818906408 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07180cam a2200733 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn818906408</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121121s2012 dcua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AZK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CNNOR</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">JBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ESU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CUY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">YDX</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">923220306</subfield><subfield code="a">929120364</subfield><subfield code="a">960204375</subfield><subfield code="a">961491254</subfield><subfield code="a">962640464</subfield><subfield code="a">988461420</subfield><subfield code="a">991958390</subfield><subfield code="a">994989212</subfield><subfield code="a">1037927046</subfield><subfield code="a">1038694562</subfield><subfield code="a">1045466102</subfield><subfield code="a">1055358406</subfield><subfield code="a">1062991312</subfield><subfield code="a">1077263573</subfield><subfield code="a">1081250137</subfield><subfield code="a">1083560678</subfield><subfield code="a">1153545617</subfield><subfield code="a">1198812247</subfield><subfield code="a">1228607278</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614446064</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1614446067</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470453039</subfield><subfield code="q">(online)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1470453037</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780883857793</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0883857790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818906408</subfield><subfield code="z">(OCoLC)923220306</subfield><subfield code="z">(OCoLC)929120364</subfield><subfield code="z">(OCoLC)960204375</subfield><subfield code="z">(OCoLC)961491254</subfield><subfield code="z">(OCoLC)962640464</subfield><subfield code="z">(OCoLC)988461420</subfield><subfield code="z">(OCoLC)991958390</subfield><subfield code="z">(OCoLC)994989212</subfield><subfield code="z">(OCoLC)1037927046</subfield><subfield code="z">(OCoLC)1038694562</subfield><subfield code="z">(OCoLC)1045466102</subfield><subfield code="z">(OCoLC)1055358406</subfield><subfield code="z">(OCoLC)1062991312</subfield><subfield code="z">(OCoLC)1077263573</subfield><subfield code="z">(OCoLC)1081250137</subfield><subfield code="z">(OCoLC)1083560678</subfield><subfield code="z">(OCoLC)1153545617</subfield><subfield code="z">(OCoLC)1198812247</subfield><subfield code="z">(OCoLC)1228607278</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">018000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oberste-Vorth, Ralph W.,</subfield><subfield code="d">1959-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjMqcGxvQ4WgWJdbWH8RDq</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013031151</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridge to abstract mathematics /</subfield><subfield code="c">Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[Washington, DC] :</subfield><subfield code="b">Mathematical Association of America,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 232 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">MAA textbooks</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 223) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="v">Textbooks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="v">Textbooks.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Infinity.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Logic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Beweis</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4132532-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4037944-9</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Textbooks</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mouzakitis, Aristides.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lawrence, Bonita A.,</subfield><subfield code="d">1957-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyr99R3vwjyM3j9Kh4QMd</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013031145</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Bridge to abstract mathematics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGYMFj4xhCdm6tfKDgMWym</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Oberste-Vorth, Ralph W., 1959-</subfield><subfield code="t">Bridge to abstract mathematics.</subfield><subfield code="d">[Washington, DC] : Mathematical Association of America, ©2012</subfield><subfield code="z">9780883857793</subfield><subfield code="w">(OCoLC)809028598</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">MAA textbooks.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2008011989</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3934669</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">306451501</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3330426</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733069</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">481551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9674951</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Textbooks fast |
genre_facet | Textbooks |
id | ZDB-4-EBA-ocn818906408 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:04Z |
institution | BVB |
isbn | 9781614446064 1614446067 9781470453039 1470453037 |
language | English |
oclc_num | 818906408 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 232 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Mathematical Association of America, |
record_format | marc |
series | MAA textbooks. |
series2 | MAA textbooks |
spelling | Oberste-Vorth, Ralph W., 1959- https://id.oclc.org/worldcat/entity/E39PCjMqcGxvQ4WgWJdbWH8RDq http://id.loc.gov/authorities/names/no2013031151 Bridge to abstract mathematics / Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. [Washington, DC] : Mathematical Association of America, ©2012. 1 online resource (xix, 232 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file MAA textbooks Includes bibliographical references (page 223) and index. Print version record. Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises Of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises Logic, Symbolic and mathematical Textbooks. Mathematics Textbooks. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Mathematics fast Beweis gnd http://d-nb.info/gnd/4132532-1 Mathematik gnd http://d-nb.info/gnd/4037944-9 Textbooks fast Mouzakitis, Aristides. Lawrence, Bonita A., 1957- https://id.oclc.org/worldcat/entity/E39PCjyr99R3vwjyM3j9Kh4QMd http://id.loc.gov/authorities/names/no2013031145 has work: Bridge to abstract mathematics (Text) https://id.oclc.org/worldcat/entity/E39PCGYMFj4xhCdm6tfKDgMWym https://id.oclc.org/worldcat/ontology/hasWork Print version: Oberste-Vorth, Ralph W., 1959- Bridge to abstract mathematics. [Washington, DC] : Mathematical Association of America, ©2012 9780883857793 (OCoLC)809028598 MAA textbooks. http://id.loc.gov/authorities/names/no2008011989 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3934669 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551 Volltext |
spellingShingle | Oberste-Vorth, Ralph W., 1959- Bridge to abstract mathematics / MAA textbooks. Front cover -- copyright page -- title page -- Contents -- Some Notes on Notation -- To the Students -- To Those Beginning the Journey into Proof Writing -- How to Use This Text -- Do the Exercises! -- Acknowledgments -- For the Professors -- To Those Leading the Development of Proof Writing for Students in a Broad Range of Disciplines -- I THE AXIOMATIC METHOD -- Introduction -- The History of Numbers -- The Algebra of Numbers -- The Axiomatic Method -- Parallel Mathematical Universes -- Statements in Mathematics -- Mathematical Statements Mathematical ConnectivesSymbolic Logic -- Compound Statements in English -- Predicates and Quantifiers -- Supplemental Exercises -- Proofs in Mathematics -- What is Mathematics? -- Direct Proof -- Contraposition and Proof by Contradiction -- Proof by Induction -- Proof by Complete Induction -- Examples and Counterexamples -- Supplemental Exercises -- How to THINK about mathematics: A Summary -- How to COMMUNICATE mathematics: A Summary -- How to DO mathematics: A Summary -- II SET THEORY -- Basic Set Operations -- Introduction -- Subsets Intersections and UnionsIntersections and Unions of Arbitrary Collections -- Differences and Complements -- Power Sets -- Russell's Paradox -- Supplemental Exercises -- Functions -- Functions as Rules -- Cartesian Products, Relations, and Functions -- Injective, Surjective, and Bijective Functions -- Compositions of Functions -- Inverse Functions and Inverse Images of Functions -- Another Approach to Compositions -- Supplemental Exercises -- Relations on a Set -- Properties of Relations -- Order Relations -- Equivalence Relations Supplemental ExercisesCardinality -- Cardinality of Sets: Introduction -- Finite Sets -- Infinite Sets -- Countable Sets -- Uncountable Sets -- Supplemental Exercises -- III NUMBER SYSTEMS -- Algebra of Number Systems -- Introduction: A Road Map -- Primary Properties of Number Systems -- Secondary Properties -- Isomorphisms and Embeddings -- Archimedean Ordered Fields -- Supplemental Exercises -- The Natural Numbers -- Introduction -- Zero, the Natural Numbers, and Addition -- Multiplication -- Supplemental Exercises Summary of the Properties of the Nonnegative IntegersThe Integers -- Introduction: Integers as Equivalence Classes -- A Total Ordering of the Integers -- Addition of Integers -- Multiplication of Integers -- Embedding the Natural Numbers in the Integers -- Supplemental Exercises -- Summary of the Properties of the Integers -- The Rational Numbers -- Introduction: Rationals as Equivalence Classes -- A Total Ordering of the Rationals -- Addition of Rationals -- Multiplication of Rationals -- An Ordered Field Containing the Integers -- Supplemental Exercises Logic, Symbolic and mathematical Textbooks. Mathematics Textbooks. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Mathematics fast Beweis gnd http://d-nb.info/gnd/4132532-1 Mathematik gnd http://d-nb.info/gnd/4037944-9 |
subject_GND | http://d-nb.info/gnd/4132532-1 http://d-nb.info/gnd/4037944-9 |
title | Bridge to abstract mathematics / |
title_auth | Bridge to abstract mathematics / |
title_exact_search | Bridge to abstract mathematics / |
title_full | Bridge to abstract mathematics / Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. |
title_fullStr | Bridge to abstract mathematics / Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. |
title_full_unstemmed | Bridge to abstract mathematics / Ralph W. Oberste-Vorth, Aristides Mouzakitis, Bonita A. Lawrence. |
title_short | Bridge to abstract mathematics / |
title_sort | bridge to abstract mathematics |
topic | Logic, Symbolic and mathematical Textbooks. Mathematics Textbooks. MATHEMATICS Infinity. bisacsh MATHEMATICS Logic. bisacsh Logic, Symbolic and mathematical fast Mathematics fast Beweis gnd http://d-nb.info/gnd/4132532-1 Mathematik gnd http://d-nb.info/gnd/4037944-9 |
topic_facet | Logic, Symbolic and mathematical Textbooks. Mathematics Textbooks. MATHEMATICS Infinity. MATHEMATICS Logic. Logic, Symbolic and mathematical Mathematics Beweis Mathematik Textbooks |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=3934669 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=481551 |
work_keys_str_mv | AT oberstevorthralphw bridgetoabstractmathematics AT mouzakitisaristides bridgetoabstractmathematics AT lawrencebonitaa bridgetoabstractmathematics |