Optimization and anti-optimization of structures under uncertainty /:
The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London : Hackensack, NJ :
Imperial College Press ; Distributed by World Scientific,
2010.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering. |
Beschreibung: | 1 online resource (xxii, 402 pages :) |
Bibliographie: | Includes bibliographical references and indexes. |
ISBN: | 9781848164789 1848164785 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn670429484 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 101018s2010 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCQ |d STF |d CDX |d YDXCP |d EBLCP |d OCLCQ |d FVL |d OCLCQ |d UIU |d OCLCQ |d DEBSZ |d OCLCQ |d AZK |d LOA |d JBG |d AGLDB |d MOR |d PIFAG |d ZCU |d MERUC |d OCLCQ |d U3W |d OCLCF |d WRM |d OCLCQ |d VTS |d CEF |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d OCLCQ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d LEAUB |d UKCRE |d AJS |d OCLCA |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
015 | |a GBB091820 |2 bnb | ||
016 | 7 | |a 015418832 |2 Uk | |
019 | |a 666256902 |a 712995101 |a 748608571 |a 961495232 |a 962656278 |a 968301113 |a 988440442 |a 992059527 |a 1037733795 |a 1038699368 |a 1055390062 |a 1062864164 |a 1081277883 |a 1086500029 |a 1153479963 |a 1228607428 | ||
020 | |a 9781848164789 |q (electronic bk.) | ||
020 | |a 1848164785 |q (electronic bk.) | ||
020 | |z 1848164777 | ||
020 | |z 9781848164772 | ||
024 | 8 | |a 9786612760068 | |
035 | |a (OCoLC)670429484 |z (OCoLC)666256902 |z (OCoLC)712995101 |z (OCoLC)748608571 |z (OCoLC)961495232 |z (OCoLC)962656278 |z (OCoLC)968301113 |z (OCoLC)988440442 |z (OCoLC)992059527 |z (OCoLC)1037733795 |z (OCoLC)1038699368 |z (OCoLC)1055390062 |z (OCoLC)1062864164 |z (OCoLC)1081277883 |z (OCoLC)1086500029 |z (OCoLC)1153479963 |z (OCoLC)1228607428 | ||
037 | |a 276006 |b MIL | ||
050 | 4 | |a TA658.8 |b E53 2010eb | |
072 | 7 | |a TEC |x 063000 |2 bisacsh | |
082 | 7 | |a 624.1 |2 22 | |
084 | |a 90-02 |a 90C47 |a 74P99 |2 msc | ||
084 | |a MTA 090f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Elishakoff, Isaac. | |
245 | 1 | 0 | |a Optimization and anti-optimization of structures under uncertainty / |c Isaac Elishakoff, Makoto Ohsaki. |
260 | |a London : |b Imperial College Press ; |a Hackensack, NJ : |b Distributed by World Scientific, |c 2010. | ||
300 | |a 1 online resource (xxii, 402 pages :) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and indexes. | ||
520 | |a The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering. | ||
505 | 0 | |a 1. Introduction. 1.1. Probabilistic analysis : bad news. 1.2. Probabilistic analysis : good news. 1.3. Convergence of probability and anti-optimization -- 2. Optimization or making the best in the presence of certainty/uncertainty. 2.1. Introduction. 2.2. What can we get from structural optimization? 2.3. Definition of the structural optimization problem. 2.4. Various formulations of optimization problems. 2.5. Approximation by metamodels. 2.6. Heuristics. 2.7. Classification of structural optimization problems. 2.8. Probabilistic optimization. 2.9. Fuzzy optimization -- 3. General formulation of anti-optimization. 3.1. Introduction. 3.2. Models of uncertainty. 3.3. Interval analysis. 3.4. Ellipsoidal model. 3.5. Anti-optimization problem. 3.6. Linearization by sensitivity analysis. 3.7. Exact reanalysis of static response -- 4. Anti-optimization in static problems. 4.1. A simple example. 4.2. Boley's pioneering problem. 4.3. Anti-optimization problem for static responses. 4.4. Matrix perturbation methods for static problems. 4.5. Stress concentration at a nearly circular hole with uncertain irregularities. 4.6. Anti-optimization of prestresses of tensegrity structures -- 5. Anti-optimization in buckling. 5.1. Introduction. 5.2. A simple example. 5.3. Buckling analysis. 5.4. Anti-optimization problem. 5.5. Worst imperfection of braced frame with multiple buckling loads. 5.6. Anti-optimization based on convexity of stability region. 5.7. Worst imperfection of an arch-type truss with multiple member buckling at limit point. 5.8. Some further references -- 6. Anti-optimization in vibration. 6.1. Introduction. 6.2. A simple example of anti-optimization for eigenvalue of vibration. 6.3. Bulgakov's problem. 6.4. Non-probabilistic, convex-theoretic modeling of scatter in material properties. 6.5. Anti-optimization of earthquake excitation and response. 6.6. A generalization of the Drenick-Shinozuka model for bounds on the seismic response. 6.7. Aeroelastic optimization and anti-optimization. 6.8. Some further references -- 7. Anti-optimization via FEM-based interval analysis. 7.1. Introduction. 7.2. Interval analysis of MDOF systems. 7.3. Interval finite element analysis for linear static problem. 7.4. Interval finite element analysis of shear frame. 7.5. Interval analysis for pattern loading. 7.6. Some further references -- 8. Anti-optimization and probabilistic design. 8.1. Introduction. 8.2. Contrasting probabilistic and anti-optimization approaches. 8.3. Anti-optimization versus probability : vector uncertainty -- 9. Hybrid optimization with anti-optimization under uncertainty or making the best out of the worst. 9.1. Introduction. 9.2. A simple example. 9.3. Formulation of the two-level optimization-anti-optimization problem. 9.4. Algorithms for two-level optimization-anti-optimization. 9.5. Optimization against nonlinear buckling. 9.6. Stress and displacement constraints. 9.7. Compliance constraints. 9.8. Homology design. 9.9. Design of flexible structures under constraints on asymptotic stability. 9.10. Force identification of prestressed structures. 9.11. Some further references -- 10. Concluding remarks. 10.1. Why were practical engineers reluctant to adopt structural optimization? 10.2. Why didn't practical engineers totally embrace probabilistic methods? 10.3. Why don't the probabilistic methods find appreciation among theoreticians and practitioners alike? 10.4. Is the suggested methodology a new one? 10.5. Finally, why did we write this book? | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Structural optimization |x Mathematics. | |
650 | 0 | |a Structural analysis (Engineering) |x Mathematics. | |
650 | 0 | |a Structural stability |x Mathematics. | |
650 | 0 | |a Computer-aided engineering. |0 http://id.loc.gov/authorities/subjects/sh89002586 | |
650 | 6 | |a Optimisation des structures |x Mathématiques. | |
650 | 6 | |a Théorie des constructions |x Mathématiques. | |
650 | 6 | |a Constructions |x Stabilité |x Mathématiques. | |
650 | 6 | |a Ingénierie assistée par ordinateur. | |
650 | 7 | |a computer-aided engineering. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Structural. |2 bisacsh | |
650 | 7 | |a Computer-aided engineering |2 fast | |
650 | 7 | |a Structural analysis (Engineering) |x Mathematics |2 fast | |
650 | 7 | |a Structural optimization |x Mathematics |2 fast | |
650 | 7 | |a Strukturelle Stabilität |2 gnd |0 http://d-nb.info/gnd/4295517-8 | |
650 | 7 | |a Strukturoptimierung |2 gnd |0 http://d-nb.info/gnd/4183811-7 | |
650 | 7 | |a Constructions, Théorie des |x Stabilité |x Analyse mathématique. |2 ram | |
700 | 1 | |a Ōsaki, Makoto, |d 1960- |1 https://id.oclc.org/worldcat/entity/E39PCjFvJcXycCCXVfRYpChKBd | |
758 | |i has work: |a Optimization and anti-optimization of structures under uncertainty (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJD4bcByVqtM3d8fJhXMP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Elishakoff, Isaac. |t Optimization and anti-optimization of structures under uncertainty. |d London : Imperial College Press ; Hackensack, NJ : Distributed by World Scientific, 2010 |z 1848164777 |w (OCoLC)556996946 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH24682643 | ||
938 | |a Coutts Information Services |b COUT |n 15220673 |c 65.00 GBP | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL731256 | ||
938 | |a ebrary |b EBRY |n ebr10422498 | ||
938 | |a EBSCOhost |b EBSC |n 340741 | ||
938 | |a YBP Library Services |b YANK |n 3511275 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn670429484 |
---|---|
_version_ | 1813903385916604416 |
adam_text | |
any_adam_object | |
author | Elishakoff, Isaac |
author2 | Ōsaki, Makoto, 1960- |
author2_role | |
author2_variant | m o mo |
author_facet | Elishakoff, Isaac Ōsaki, Makoto, 1960- |
author_role | |
author_sort | Elishakoff, Isaac |
author_variant | i e ie |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA658 |
callnumber-raw | TA658.8 E53 2010eb |
callnumber-search | TA658.8 E53 2010eb |
callnumber-sort | TA 3658.8 E53 42010EB |
callnumber-subject | TA - General and Civil Engineering |
classification_tum | MTA 090f |
collection | ZDB-4-EBA |
contents | 1. Introduction. 1.1. Probabilistic analysis : bad news. 1.2. Probabilistic analysis : good news. 1.3. Convergence of probability and anti-optimization -- 2. Optimization or making the best in the presence of certainty/uncertainty. 2.1. Introduction. 2.2. What can we get from structural optimization? 2.3. Definition of the structural optimization problem. 2.4. Various formulations of optimization problems. 2.5. Approximation by metamodels. 2.6. Heuristics. 2.7. Classification of structural optimization problems. 2.8. Probabilistic optimization. 2.9. Fuzzy optimization -- 3. General formulation of anti-optimization. 3.1. Introduction. 3.2. Models of uncertainty. 3.3. Interval analysis. 3.4. Ellipsoidal model. 3.5. Anti-optimization problem. 3.6. Linearization by sensitivity analysis. 3.7. Exact reanalysis of static response -- 4. Anti-optimization in static problems. 4.1. A simple example. 4.2. Boley's pioneering problem. 4.3. Anti-optimization problem for static responses. 4.4. Matrix perturbation methods for static problems. 4.5. Stress concentration at a nearly circular hole with uncertain irregularities. 4.6. Anti-optimization of prestresses of tensegrity structures -- 5. Anti-optimization in buckling. 5.1. Introduction. 5.2. A simple example. 5.3. Buckling analysis. 5.4. Anti-optimization problem. 5.5. Worst imperfection of braced frame with multiple buckling loads. 5.6. Anti-optimization based on convexity of stability region. 5.7. Worst imperfection of an arch-type truss with multiple member buckling at limit point. 5.8. Some further references -- 6. Anti-optimization in vibration. 6.1. Introduction. 6.2. A simple example of anti-optimization for eigenvalue of vibration. 6.3. Bulgakov's problem. 6.4. Non-probabilistic, convex-theoretic modeling of scatter in material properties. 6.5. Anti-optimization of earthquake excitation and response. 6.6. A generalization of the Drenick-Shinozuka model for bounds on the seismic response. 6.7. Aeroelastic optimization and anti-optimization. 6.8. Some further references -- 7. Anti-optimization via FEM-based interval analysis. 7.1. Introduction. 7.2. Interval analysis of MDOF systems. 7.3. Interval finite element analysis for linear static problem. 7.4. Interval finite element analysis of shear frame. 7.5. Interval analysis for pattern loading. 7.6. Some further references -- 8. Anti-optimization and probabilistic design. 8.1. Introduction. 8.2. Contrasting probabilistic and anti-optimization approaches. 8.3. Anti-optimization versus probability : vector uncertainty -- 9. Hybrid optimization with anti-optimization under uncertainty or making the best out of the worst. 9.1. Introduction. 9.2. A simple example. 9.3. Formulation of the two-level optimization-anti-optimization problem. 9.4. Algorithms for two-level optimization-anti-optimization. 9.5. Optimization against nonlinear buckling. 9.6. Stress and displacement constraints. 9.7. Compliance constraints. 9.8. Homology design. 9.9. Design of flexible structures under constraints on asymptotic stability. 9.10. Force identification of prestressed structures. 9.11. Some further references -- 10. Concluding remarks. 10.1. Why were practical engineers reluctant to adopt structural optimization? 10.2. Why didn't practical engineers totally embrace probabilistic methods? 10.3. Why don't the probabilistic methods find appreciation among theoreticians and practitioners alike? 10.4. Is the suggested methodology a new one? 10.5. Finally, why did we write this book? |
ctrlnum | (OCoLC)670429484 |
dewey-full | 624.1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 624 - Civil engineering |
dewey-raw | 624.1 |
dewey-search | 624.1 |
dewey-sort | 3624.1 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Bauingenieurwesen |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08826cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn670429484</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">101018s2010 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">CDX</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">ZCU</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB091820</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">015418832</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">666256902</subfield><subfield code="a">712995101</subfield><subfield code="a">748608571</subfield><subfield code="a">961495232</subfield><subfield code="a">962656278</subfield><subfield code="a">968301113</subfield><subfield code="a">988440442</subfield><subfield code="a">992059527</subfield><subfield code="a">1037733795</subfield><subfield code="a">1038699368</subfield><subfield code="a">1055390062</subfield><subfield code="a">1062864164</subfield><subfield code="a">1081277883</subfield><subfield code="a">1086500029</subfield><subfield code="a">1153479963</subfield><subfield code="a">1228607428</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848164789</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848164785</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1848164777</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848164772</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786612760068</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)670429484</subfield><subfield code="z">(OCoLC)666256902</subfield><subfield code="z">(OCoLC)712995101</subfield><subfield code="z">(OCoLC)748608571</subfield><subfield code="z">(OCoLC)961495232</subfield><subfield code="z">(OCoLC)962656278</subfield><subfield code="z">(OCoLC)968301113</subfield><subfield code="z">(OCoLC)988440442</subfield><subfield code="z">(OCoLC)992059527</subfield><subfield code="z">(OCoLC)1037733795</subfield><subfield code="z">(OCoLC)1038699368</subfield><subfield code="z">(OCoLC)1055390062</subfield><subfield code="z">(OCoLC)1062864164</subfield><subfield code="z">(OCoLC)1081277883</subfield><subfield code="z">(OCoLC)1086500029</subfield><subfield code="z">(OCoLC)1153479963</subfield><subfield code="z">(OCoLC)1228607428</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">276006</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA658.8</subfield><subfield code="b">E53 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">063000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">624.1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">90-02</subfield><subfield code="a">90C47</subfield><subfield code="a">74P99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 090f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elishakoff, Isaac.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization and anti-optimization of structures under uncertainty /</subfield><subfield code="c">Isaac Elishakoff, Makoto Ohsaki.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">Distributed by World Scientific,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxii, 402 pages :)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction. 1.1. Probabilistic analysis : bad news. 1.2. Probabilistic analysis : good news. 1.3. Convergence of probability and anti-optimization -- 2. Optimization or making the best in the presence of certainty/uncertainty. 2.1. Introduction. 2.2. What can we get from structural optimization? 2.3. Definition of the structural optimization problem. 2.4. Various formulations of optimization problems. 2.5. Approximation by metamodels. 2.6. Heuristics. 2.7. Classification of structural optimization problems. 2.8. Probabilistic optimization. 2.9. Fuzzy optimization -- 3. General formulation of anti-optimization. 3.1. Introduction. 3.2. Models of uncertainty. 3.3. Interval analysis. 3.4. Ellipsoidal model. 3.5. Anti-optimization problem. 3.6. Linearization by sensitivity analysis. 3.7. Exact reanalysis of static response -- 4. Anti-optimization in static problems. 4.1. A simple example. 4.2. Boley's pioneering problem. 4.3. Anti-optimization problem for static responses. 4.4. Matrix perturbation methods for static problems. 4.5. Stress concentration at a nearly circular hole with uncertain irregularities. 4.6. Anti-optimization of prestresses of tensegrity structures -- 5. Anti-optimization in buckling. 5.1. Introduction. 5.2. A simple example. 5.3. Buckling analysis. 5.4. Anti-optimization problem. 5.5. Worst imperfection of braced frame with multiple buckling loads. 5.6. Anti-optimization based on convexity of stability region. 5.7. Worst imperfection of an arch-type truss with multiple member buckling at limit point. 5.8. Some further references -- 6. Anti-optimization in vibration. 6.1. Introduction. 6.2. A simple example of anti-optimization for eigenvalue of vibration. 6.3. Bulgakov's problem. 6.4. Non-probabilistic, convex-theoretic modeling of scatter in material properties. 6.5. Anti-optimization of earthquake excitation and response. 6.6. A generalization of the Drenick-Shinozuka model for bounds on the seismic response. 6.7. Aeroelastic optimization and anti-optimization. 6.8. Some further references -- 7. Anti-optimization via FEM-based interval analysis. 7.1. Introduction. 7.2. Interval analysis of MDOF systems. 7.3. Interval finite element analysis for linear static problem. 7.4. Interval finite element analysis of shear frame. 7.5. Interval analysis for pattern loading. 7.6. Some further references -- 8. Anti-optimization and probabilistic design. 8.1. Introduction. 8.2. Contrasting probabilistic and anti-optimization approaches. 8.3. Anti-optimization versus probability : vector uncertainty -- 9. Hybrid optimization with anti-optimization under uncertainty or making the best out of the worst. 9.1. Introduction. 9.2. A simple example. 9.3. Formulation of the two-level optimization-anti-optimization problem. 9.4. Algorithms for two-level optimization-anti-optimization. 9.5. Optimization against nonlinear buckling. 9.6. Stress and displacement constraints. 9.7. Compliance constraints. 9.8. Homology design. 9.9. Design of flexible structures under constraints on asymptotic stability. 9.10. Force identification of prestressed structures. 9.11. Some further references -- 10. Concluding remarks. 10.1. Why were practical engineers reluctant to adopt structural optimization? 10.2. Why didn't practical engineers totally embrace probabilistic methods? 10.3. Why don't the probabilistic methods find appreciation among theoreticians and practitioners alike? 10.4. Is the suggested methodology a new one? 10.5. Finally, why did we write this book?</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural optimization</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Structural stability</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Computer-aided engineering.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89002586</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Optimisation des structures</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des constructions</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Constructions</subfield><subfield code="x">Stabilité</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Ingénierie assistée par ordinateur.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">computer-aided engineering.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Structural.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Computer-aided engineering</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural analysis (Engineering)</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Structural optimization</subfield><subfield code="x">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strukturelle Stabilität</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4295517-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Strukturoptimierung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4183811-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constructions, Théorie des</subfield><subfield code="x">Stabilité</subfield><subfield code="x">Analyse mathématique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ōsaki, Makoto,</subfield><subfield code="d">1960-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFvJcXycCCXVfRYpChKBd</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Optimization and anti-optimization of structures under uncertainty (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJD4bcByVqtM3d8fJhXMP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Elishakoff, Isaac.</subfield><subfield code="t">Optimization and anti-optimization of structures under uncertainty.</subfield><subfield code="d">London : Imperial College Press ; Hackensack, NJ : Distributed by World Scientific, 2010</subfield><subfield code="z">1848164777</subfield><subfield code="w">(OCoLC)556996946</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24682643</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">15220673</subfield><subfield code="c">65.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL731256</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10422498</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">340741</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3511275</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn670429484 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:17:51Z |
institution | BVB |
isbn | 9781848164789 1848164785 |
language | English |
oclc_num | 670429484 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xxii, 402 pages :) |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Imperial College Press ; Distributed by World Scientific, |
record_format | marc |
spelling | Elishakoff, Isaac. Optimization and anti-optimization of structures under uncertainty / Isaac Elishakoff, Makoto Ohsaki. London : Imperial College Press ; Hackensack, NJ : Distributed by World Scientific, 2010. 1 online resource (xxii, 402 pages :) text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and indexes. The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering. 1. Introduction. 1.1. Probabilistic analysis : bad news. 1.2. Probabilistic analysis : good news. 1.3. Convergence of probability and anti-optimization -- 2. Optimization or making the best in the presence of certainty/uncertainty. 2.1. Introduction. 2.2. What can we get from structural optimization? 2.3. Definition of the structural optimization problem. 2.4. Various formulations of optimization problems. 2.5. Approximation by metamodels. 2.6. Heuristics. 2.7. Classification of structural optimization problems. 2.8. Probabilistic optimization. 2.9. Fuzzy optimization -- 3. General formulation of anti-optimization. 3.1. Introduction. 3.2. Models of uncertainty. 3.3. Interval analysis. 3.4. Ellipsoidal model. 3.5. Anti-optimization problem. 3.6. Linearization by sensitivity analysis. 3.7. Exact reanalysis of static response -- 4. Anti-optimization in static problems. 4.1. A simple example. 4.2. Boley's pioneering problem. 4.3. Anti-optimization problem for static responses. 4.4. Matrix perturbation methods for static problems. 4.5. Stress concentration at a nearly circular hole with uncertain irregularities. 4.6. Anti-optimization of prestresses of tensegrity structures -- 5. Anti-optimization in buckling. 5.1. Introduction. 5.2. A simple example. 5.3. Buckling analysis. 5.4. Anti-optimization problem. 5.5. Worst imperfection of braced frame with multiple buckling loads. 5.6. Anti-optimization based on convexity of stability region. 5.7. Worst imperfection of an arch-type truss with multiple member buckling at limit point. 5.8. Some further references -- 6. Anti-optimization in vibration. 6.1. Introduction. 6.2. A simple example of anti-optimization for eigenvalue of vibration. 6.3. Bulgakov's problem. 6.4. Non-probabilistic, convex-theoretic modeling of scatter in material properties. 6.5. Anti-optimization of earthquake excitation and response. 6.6. A generalization of the Drenick-Shinozuka model for bounds on the seismic response. 6.7. Aeroelastic optimization and anti-optimization. 6.8. Some further references -- 7. Anti-optimization via FEM-based interval analysis. 7.1. Introduction. 7.2. Interval analysis of MDOF systems. 7.3. Interval finite element analysis for linear static problem. 7.4. Interval finite element analysis of shear frame. 7.5. Interval analysis for pattern loading. 7.6. Some further references -- 8. Anti-optimization and probabilistic design. 8.1. Introduction. 8.2. Contrasting probabilistic and anti-optimization approaches. 8.3. Anti-optimization versus probability : vector uncertainty -- 9. Hybrid optimization with anti-optimization under uncertainty or making the best out of the worst. 9.1. Introduction. 9.2. A simple example. 9.3. Formulation of the two-level optimization-anti-optimization problem. 9.4. Algorithms for two-level optimization-anti-optimization. 9.5. Optimization against nonlinear buckling. 9.6. Stress and displacement constraints. 9.7. Compliance constraints. 9.8. Homology design. 9.9. Design of flexible structures under constraints on asymptotic stability. 9.10. Force identification of prestressed structures. 9.11. Some further references -- 10. Concluding remarks. 10.1. Why were practical engineers reluctant to adopt structural optimization? 10.2. Why didn't practical engineers totally embrace probabilistic methods? 10.3. Why don't the probabilistic methods find appreciation among theoreticians and practitioners alike? 10.4. Is the suggested methodology a new one? 10.5. Finally, why did we write this book? Print version record. Structural optimization Mathematics. Structural analysis (Engineering) Mathematics. Structural stability Mathematics. Computer-aided engineering. http://id.loc.gov/authorities/subjects/sh89002586 Optimisation des structures Mathématiques. Théorie des constructions Mathématiques. Constructions Stabilité Mathématiques. Ingénierie assistée par ordinateur. computer-aided engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Computer-aided engineering fast Structural analysis (Engineering) Mathematics fast Structural optimization Mathematics fast Strukturelle Stabilität gnd http://d-nb.info/gnd/4295517-8 Strukturoptimierung gnd http://d-nb.info/gnd/4183811-7 Constructions, Théorie des Stabilité Analyse mathématique. ram Ōsaki, Makoto, 1960- https://id.oclc.org/worldcat/entity/E39PCjFvJcXycCCXVfRYpChKBd has work: Optimization and anti-optimization of structures under uncertainty (Text) https://id.oclc.org/worldcat/entity/E39PCGJD4bcByVqtM3d8fJhXMP https://id.oclc.org/worldcat/ontology/hasWork Print version: Elishakoff, Isaac. Optimization and anti-optimization of structures under uncertainty. London : Imperial College Press ; Hackensack, NJ : Distributed by World Scientific, 2010 1848164777 (OCoLC)556996946 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741 Volltext |
spellingShingle | Elishakoff, Isaac Optimization and anti-optimization of structures under uncertainty / 1. Introduction. 1.1. Probabilistic analysis : bad news. 1.2. Probabilistic analysis : good news. 1.3. Convergence of probability and anti-optimization -- 2. Optimization or making the best in the presence of certainty/uncertainty. 2.1. Introduction. 2.2. What can we get from structural optimization? 2.3. Definition of the structural optimization problem. 2.4. Various formulations of optimization problems. 2.5. Approximation by metamodels. 2.6. Heuristics. 2.7. Classification of structural optimization problems. 2.8. Probabilistic optimization. 2.9. Fuzzy optimization -- 3. General formulation of anti-optimization. 3.1. Introduction. 3.2. Models of uncertainty. 3.3. Interval analysis. 3.4. Ellipsoidal model. 3.5. Anti-optimization problem. 3.6. Linearization by sensitivity analysis. 3.7. Exact reanalysis of static response -- 4. Anti-optimization in static problems. 4.1. A simple example. 4.2. Boley's pioneering problem. 4.3. Anti-optimization problem for static responses. 4.4. Matrix perturbation methods for static problems. 4.5. Stress concentration at a nearly circular hole with uncertain irregularities. 4.6. Anti-optimization of prestresses of tensegrity structures -- 5. Anti-optimization in buckling. 5.1. Introduction. 5.2. A simple example. 5.3. Buckling analysis. 5.4. Anti-optimization problem. 5.5. Worst imperfection of braced frame with multiple buckling loads. 5.6. Anti-optimization based on convexity of stability region. 5.7. Worst imperfection of an arch-type truss with multiple member buckling at limit point. 5.8. Some further references -- 6. Anti-optimization in vibration. 6.1. Introduction. 6.2. A simple example of anti-optimization for eigenvalue of vibration. 6.3. Bulgakov's problem. 6.4. Non-probabilistic, convex-theoretic modeling of scatter in material properties. 6.5. Anti-optimization of earthquake excitation and response. 6.6. A generalization of the Drenick-Shinozuka model for bounds on the seismic response. 6.7. Aeroelastic optimization and anti-optimization. 6.8. Some further references -- 7. Anti-optimization via FEM-based interval analysis. 7.1. Introduction. 7.2. Interval analysis of MDOF systems. 7.3. Interval finite element analysis for linear static problem. 7.4. Interval finite element analysis of shear frame. 7.5. Interval analysis for pattern loading. 7.6. Some further references -- 8. Anti-optimization and probabilistic design. 8.1. Introduction. 8.2. Contrasting probabilistic and anti-optimization approaches. 8.3. Anti-optimization versus probability : vector uncertainty -- 9. Hybrid optimization with anti-optimization under uncertainty or making the best out of the worst. 9.1. Introduction. 9.2. A simple example. 9.3. Formulation of the two-level optimization-anti-optimization problem. 9.4. Algorithms for two-level optimization-anti-optimization. 9.5. Optimization against nonlinear buckling. 9.6. Stress and displacement constraints. 9.7. Compliance constraints. 9.8. Homology design. 9.9. Design of flexible structures under constraints on asymptotic stability. 9.10. Force identification of prestressed structures. 9.11. Some further references -- 10. Concluding remarks. 10.1. Why were practical engineers reluctant to adopt structural optimization? 10.2. Why didn't practical engineers totally embrace probabilistic methods? 10.3. Why don't the probabilistic methods find appreciation among theoreticians and practitioners alike? 10.4. Is the suggested methodology a new one? 10.5. Finally, why did we write this book? Structural optimization Mathematics. Structural analysis (Engineering) Mathematics. Structural stability Mathematics. Computer-aided engineering. http://id.loc.gov/authorities/subjects/sh89002586 Optimisation des structures Mathématiques. Théorie des constructions Mathématiques. Constructions Stabilité Mathématiques. Ingénierie assistée par ordinateur. computer-aided engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Computer-aided engineering fast Structural analysis (Engineering) Mathematics fast Structural optimization Mathematics fast Strukturelle Stabilität gnd http://d-nb.info/gnd/4295517-8 Strukturoptimierung gnd http://d-nb.info/gnd/4183811-7 Constructions, Théorie des Stabilité Analyse mathématique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh89002586 http://d-nb.info/gnd/4295517-8 http://d-nb.info/gnd/4183811-7 |
title | Optimization and anti-optimization of structures under uncertainty / |
title_auth | Optimization and anti-optimization of structures under uncertainty / |
title_exact_search | Optimization and anti-optimization of structures under uncertainty / |
title_full | Optimization and anti-optimization of structures under uncertainty / Isaac Elishakoff, Makoto Ohsaki. |
title_fullStr | Optimization and anti-optimization of structures under uncertainty / Isaac Elishakoff, Makoto Ohsaki. |
title_full_unstemmed | Optimization and anti-optimization of structures under uncertainty / Isaac Elishakoff, Makoto Ohsaki. |
title_short | Optimization and anti-optimization of structures under uncertainty / |
title_sort | optimization and anti optimization of structures under uncertainty |
topic | Structural optimization Mathematics. Structural analysis (Engineering) Mathematics. Structural stability Mathematics. Computer-aided engineering. http://id.loc.gov/authorities/subjects/sh89002586 Optimisation des structures Mathématiques. Théorie des constructions Mathématiques. Constructions Stabilité Mathématiques. Ingénierie assistée par ordinateur. computer-aided engineering. aat TECHNOLOGY & ENGINEERING Structural. bisacsh Computer-aided engineering fast Structural analysis (Engineering) Mathematics fast Structural optimization Mathematics fast Strukturelle Stabilität gnd http://d-nb.info/gnd/4295517-8 Strukturoptimierung gnd http://d-nb.info/gnd/4183811-7 Constructions, Théorie des Stabilité Analyse mathématique. ram |
topic_facet | Structural optimization Mathematics. Structural analysis (Engineering) Mathematics. Structural stability Mathematics. Computer-aided engineering. Optimisation des structures Mathématiques. Théorie des constructions Mathématiques. Constructions Stabilité Mathématiques. Ingénierie assistée par ordinateur. computer-aided engineering. TECHNOLOGY & ENGINEERING Structural. Computer-aided engineering Structural analysis (Engineering) Mathematics Structural optimization Mathematics Strukturelle Stabilität Strukturoptimierung Constructions, Théorie des Stabilité Analyse mathématique. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=340741 |
work_keys_str_mv | AT elishakoffisaac optimizationandantioptimizationofstructuresunderuncertainty AT osakimakoto optimizationandantioptimizationofstructuresunderuncertainty |