Bridge traffic loading: from research to practice
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2022
|
Ausgabe: | First edition |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xvii, 217 Seiten) Illustrationen, Diagramme |
ISBN: | 9781000459937 9780429318849 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048221027 | ||
003 | DE-604 | ||
005 | 20240215 | ||
007 | cr|uuu---uuuuu | ||
008 | 220516s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781000459937 |9 978-1-00-045993-7 | ||
020 | |a 9780429318849 |9 978-0-429-31884-9 | ||
035 | |a (ZDB-30-PQE)EBC6794520 | ||
035 | |a (ZDB-30-PAD)EBC6794520 | ||
035 | |a (ZDB-89-EBL)EBL6794520 | ||
035 | |a (OCoLC)1283847714 | ||
035 | |a (DE-599)BVBBV048221027 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 | ||
084 | |a BAU 725 |2 stub | ||
084 | |a BAU 431 |2 stub | ||
084 | |a BAU 720 |2 stub | ||
084 | |a BAU 846 |2 stub | ||
084 | |a BAU 537 |2 stub | ||
245 | 1 | 0 | |a Bridge traffic loading |b from research to practice |c edited by Eugene OBrien, Andrzej Nowak and Colin Caprani |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2022 | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (xvii, 217 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introductory remarks -- 1.2 Design traffic load -- 1.3 Statistical background to bridge loading -- Chapter 2 Vehicles and gross vehicle weight -- 2.1 Categories of vehicle -- 2.2 Truck weight data -- 2.3 Quality Control of traffic data -- 2.4 Variations in WIM data -- 2.5 Bridge load effects -- 2.6 Fatigue damage -- 2.7 Legal limits on vehicle loads -- 2.8 Traffic load factors -- 2.9 Limit states and reliability index -- 2.10 Extrapolation of imposed traffic load effects -- 2.11 Traffic load factors -- Chapter 3 Short-to-medium span bridges -- 3.1 Introduction -- 3.1.1 The physical and statistical phenomenon -- 3.1.2 Load modeling approaches -- 3.1.3 WIM-based load modeling -- 3.2 Traffic data -- 3.2.1 WIM data and recordings -- 3.2.2 WIM data filtering and cleaning -- 3.2.3 Measurement duration and extent -- 3.2.4 Overloaded and permit vehicles -- 3.3 Loading events -- 3.3.1 Direct use of measured WIM data -- 3.3.2 Generation of artificial traffic streams -- 3.3.2.1 Monte Carlo simulation -- 3.3.2.2 Modeling vehicles -- 3.3.2.3 Generating gaps -- 3.3.3 Traffic loading in multiple lanes -- 3.3.3.1 Opposing-direction traffic -- 3.3.3.2 Same-direction traffic -- 3.3.3.3 Scenario modeling -- 3.4 Load effects -- 3.4.1 Influence lines -- 3.4.2 Influence surfaces -- 3.4.3 Load movement -- 3.5 Dynamic interaction -- 3.6 Statistical prediction -- 3.6.1 Prediction of extremes -- 3.6.2 Composite Distribution Statistics -- 3.6.3 The governing form of traffic -- 3.7 Notional Load Models -- 3.7.1 General method -- 3.7.2 Specific considerations -- 3.7.2.1 Design versus assessment -- 3.7.2.2 Load model consistency -- 3.7.2.3 Multi-lane factors -- 3.8 Recommendations | |
505 | 8 | |a Chapter 4 Dynamic load allowance -- 4.1 Introduction -- 4.1.1 The phenomenon -- 4.1.2 Basic definitions -- 4.1.3 Factors influencing dynamic amplifications -- 4.2 Codes -- 4.2.1 AASHTO -- 4.2.2 Eurocode -- 4.2.3 Australian Standard -- 4.2.4 Chinese Standard -- 4.3 Statistical approach to dynamics -- 4.3.1 Assessment Dynamic Ratio -- 4.3.2 The shift in probability paper plots due to dynamics -- 4.3.3 The contribution of surface roughness to dynamics -- 4.4 Field measurements -- 4.4.1 History of using Bridge Weigh-in-Motion to estimate dynamic amplification -- 4.4.2 DAF results inferred from Bridge Weigh-in-Motion -- 4.4.2.1 Examples of DAF calculation -- 4.4.2.2 Decrease in DAF with increasing GVW -- 4.5 Conclusions -- Chapter 5 Long-span bridge loading -- 5.1 Introduction -- 5.2 Load models for long-span bridges -- 5.2.1 Development of North American load models -- 5.2.1.1 Ivy et al. (1954) -- 5.2.1.2 Lions Gate simulation studies -- 5.2.1.3 Current AASHTO load model -- 5.2.2 Development of United Kingdom load models -- 5.2.3 Development of other European load models -- 5.2.3.1 Eurocode -- 5.2.3.2 Storebælt East Bridge, Denmark -- 5.2.4 Asian long-span load models -- 5.2.4.1 China -- 5.2.4.2 Japan -- 5.2.4.3 Korea -- 5.3 Modeling long-span traffic loading -- 5.3.1 Traditional approaches -- 5.3.2 Traffic microsimulation -- 5.3.3 Lane changing and types of congested traffic -- 5.3.4 Extreme traffic load effects -- 5.3.5 Conclusions and future directions -- 5.3.5.1 Inter-vehicle gap data and mix of vehicle types -- 5.3.5.2 Load effect calculation -- 5.3.5.3 Influence of truck percentage -- 5.3.5.4 Future developments -- 5.4 Case studies -- 5.4.1 Model and traffic basis -- 5.4.2 Two-pylon cable-stayed bridge -- 5.4.3 Bridges with multiple pylons -- 5.4.3.1 Cable-stayed bridge -- 5.4.3.2 Suspension bridge -- 5.5 Conclusions | |
505 | 8 | |a Chapter 6 Factors affecting the accuracy of characteristic maximum load effects -- 6.1 Introduction -- 6.2 Choice of extrapolation method -- 6.2.1 The data -- 6.2.2 Extreme Value theory methods -- 6.2.2.1 Peaks-Over-Threshold -- 6.2.2.2 Block Maximum -- 6.2.2.3 Box-Cox-GEV distribution -- 6.2.3 Tail fitting -- 6.2.3.1 Castillo's approach -- 6.2.3.2 Normal distribution -- 6.2.3.3 Rice's formula -- 6.2.4 Distribution of the prediction -- 6.2.4.1 Bayesian Updating -- 6.2.4.2 Predictive Likelihood -- 6.2.5 Comparative study of extrapolation methods -- 6.2.5.1 Simple Extreme Value problem -- 6.2.5.2 Traffic load effect problem -- 6.2.6 Extrapolation recommendations -- 6.3 The nature of extreme traffic loading events -- 6.3.1 Correlations in same-direction multi-lane traffic -- 6.3.1.1 Simulating trains of truck traffic -- 6.3.2 Consistency of safety in notional load models -- 6.3.2.1 HL-93 - Single-lane bridges -- 6.3.2.2 HL-93 - Two-lane-bridges -- 6.4 Separating standard from non-standard trucks -- 6.4.1 Removing apparent non-standard vehicles from WIM data -- 6.4.2 Modeling non-standard vehicles -- 6.5 Allowing for growth in vehicle weights and frequencies -- 6.5.1 Illustration of non-stationary extremes -- 6.5.2 Influence of growth on bridge traffic load effects -- 6.5.3 Recommendations for considering traffic growth -- 6.6 Traffic loading on secondary road bridges -- 6.6.1 Sources of extreme vehicles -- 6.6.1.1 Standard vehicles -- 6.6.1.2 Non-standard vehicles -- 6.6.2 Bayesian Updating and the 'megasite' concept -- 6.6.2.1 Bayesian Updating and Kernel Density Estimation -- 6.6.2.2 The megasite data -- 6.6.2.3 Updating the characteristic maximum GVW for the Maryland site -- 6.7 Discussion -- References -- Index | |
700 | 1 | |a O'Brien, Eugene J. |d 1958- |0 (DE-588)1158454147 |4 edt | |
700 | 1 | |a Nowak, Andrzej S. |d 1945- |0 (DE-588)1173991395 |4 edt | |
700 | 1 | |a Caprani, Colin |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-367-33246-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-10136-1 |
776 | 0 | 8 | |i Erscheint auch als |a OBrien, Eugene |t Bridge Traffic Loading |d Milton : Taylor & Francis Group,c2021 |n Druck-Ausgabe |z 978-0-367-41790-1 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033601766 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6794520 |l TUM01 |p ZDB-30-PQE |q TUM_PDA_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184002029944832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | O'Brien, Eugene J. 1958- Nowak, Andrzej S. 1945- Caprani, Colin |
author2_role | edt edt edt |
author2_variant | e j o ej ejo a s n as asn c c cc |
author_GND | (DE-588)1158454147 (DE-588)1173991395 |
author_facet | O'Brien, Eugene J. 1958- Nowak, Andrzej S. 1945- Caprani, Colin |
building | Verbundindex |
bvnumber | BV048221027 |
classification_tum | BAU 725 BAU 431 BAU 720 BAU 846 BAU 537 |
collection | ZDB-30-PQE |
contents | Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introductory remarks -- 1.2 Design traffic load -- 1.3 Statistical background to bridge loading -- Chapter 2 Vehicles and gross vehicle weight -- 2.1 Categories of vehicle -- 2.2 Truck weight data -- 2.3 Quality Control of traffic data -- 2.4 Variations in WIM data -- 2.5 Bridge load effects -- 2.6 Fatigue damage -- 2.7 Legal limits on vehicle loads -- 2.8 Traffic load factors -- 2.9 Limit states and reliability index -- 2.10 Extrapolation of imposed traffic load effects -- 2.11 Traffic load factors -- Chapter 3 Short-to-medium span bridges -- 3.1 Introduction -- 3.1.1 The physical and statistical phenomenon -- 3.1.2 Load modeling approaches -- 3.1.3 WIM-based load modeling -- 3.2 Traffic data -- 3.2.1 WIM data and recordings -- 3.2.2 WIM data filtering and cleaning -- 3.2.3 Measurement duration and extent -- 3.2.4 Overloaded and permit vehicles -- 3.3 Loading events -- 3.3.1 Direct use of measured WIM data -- 3.3.2 Generation of artificial traffic streams -- 3.3.2.1 Monte Carlo simulation -- 3.3.2.2 Modeling vehicles -- 3.3.2.3 Generating gaps -- 3.3.3 Traffic loading in multiple lanes -- 3.3.3.1 Opposing-direction traffic -- 3.3.3.2 Same-direction traffic -- 3.3.3.3 Scenario modeling -- 3.4 Load effects -- 3.4.1 Influence lines -- 3.4.2 Influence surfaces -- 3.4.3 Load movement -- 3.5 Dynamic interaction -- 3.6 Statistical prediction -- 3.6.1 Prediction of extremes -- 3.6.2 Composite Distribution Statistics -- 3.6.3 The governing form of traffic -- 3.7 Notional Load Models -- 3.7.1 General method -- 3.7.2 Specific considerations -- 3.7.2.1 Design versus assessment -- 3.7.2.2 Load model consistency -- 3.7.2.3 Multi-lane factors -- 3.8 Recommendations Chapter 4 Dynamic load allowance -- 4.1 Introduction -- 4.1.1 The phenomenon -- 4.1.2 Basic definitions -- 4.1.3 Factors influencing dynamic amplifications -- 4.2 Codes -- 4.2.1 AASHTO -- 4.2.2 Eurocode -- 4.2.3 Australian Standard -- 4.2.4 Chinese Standard -- 4.3 Statistical approach to dynamics -- 4.3.1 Assessment Dynamic Ratio -- 4.3.2 The shift in probability paper plots due to dynamics -- 4.3.3 The contribution of surface roughness to dynamics -- 4.4 Field measurements -- 4.4.1 History of using Bridge Weigh-in-Motion to estimate dynamic amplification -- 4.4.2 DAF results inferred from Bridge Weigh-in-Motion -- 4.4.2.1 Examples of DAF calculation -- 4.4.2.2 Decrease in DAF with increasing GVW -- 4.5 Conclusions -- Chapter 5 Long-span bridge loading -- 5.1 Introduction -- 5.2 Load models for long-span bridges -- 5.2.1 Development of North American load models -- 5.2.1.1 Ivy et al. (1954) -- 5.2.1.2 Lions Gate simulation studies -- 5.2.1.3 Current AASHTO load model -- 5.2.2 Development of United Kingdom load models -- 5.2.3 Development of other European load models -- 5.2.3.1 Eurocode -- 5.2.3.2 Storebælt East Bridge, Denmark -- 5.2.4 Asian long-span load models -- 5.2.4.1 China -- 5.2.4.2 Japan -- 5.2.4.3 Korea -- 5.3 Modeling long-span traffic loading -- 5.3.1 Traditional approaches -- 5.3.2 Traffic microsimulation -- 5.3.3 Lane changing and types of congested traffic -- 5.3.4 Extreme traffic load effects -- 5.3.5 Conclusions and future directions -- 5.3.5.1 Inter-vehicle gap data and mix of vehicle types -- 5.3.5.2 Load effect calculation -- 5.3.5.3 Influence of truck percentage -- 5.3.5.4 Future developments -- 5.4 Case studies -- 5.4.1 Model and traffic basis -- 5.4.2 Two-pylon cable-stayed bridge -- 5.4.3 Bridges with multiple pylons -- 5.4.3.1 Cable-stayed bridge -- 5.4.3.2 Suspension bridge -- 5.5 Conclusions Chapter 6 Factors affecting the accuracy of characteristic maximum load effects -- 6.1 Introduction -- 6.2 Choice of extrapolation method -- 6.2.1 The data -- 6.2.2 Extreme Value theory methods -- 6.2.2.1 Peaks-Over-Threshold -- 6.2.2.2 Block Maximum -- 6.2.2.3 Box-Cox-GEV distribution -- 6.2.3 Tail fitting -- 6.2.3.1 Castillo's approach -- 6.2.3.2 Normal distribution -- 6.2.3.3 Rice's formula -- 6.2.4 Distribution of the prediction -- 6.2.4.1 Bayesian Updating -- 6.2.4.2 Predictive Likelihood -- 6.2.5 Comparative study of extrapolation methods -- 6.2.5.1 Simple Extreme Value problem -- 6.2.5.2 Traffic load effect problem -- 6.2.6 Extrapolation recommendations -- 6.3 The nature of extreme traffic loading events -- 6.3.1 Correlations in same-direction multi-lane traffic -- 6.3.1.1 Simulating trains of truck traffic -- 6.3.2 Consistency of safety in notional load models -- 6.3.2.1 HL-93 - Single-lane bridges -- 6.3.2.2 HL-93 - Two-lane-bridges -- 6.4 Separating standard from non-standard trucks -- 6.4.1 Removing apparent non-standard vehicles from WIM data -- 6.4.2 Modeling non-standard vehicles -- 6.5 Allowing for growth in vehicle weights and frequencies -- 6.5.1 Illustration of non-stationary extremes -- 6.5.2 Influence of growth on bridge traffic load effects -- 6.5.3 Recommendations for considering traffic growth -- 6.6 Traffic loading on secondary road bridges -- 6.6.1 Sources of extreme vehicles -- 6.6.1.1 Standard vehicles -- 6.6.1.2 Non-standard vehicles -- 6.6.2 Bayesian Updating and the 'megasite' concept -- 6.6.2.1 Bayesian Updating and Kernel Density Estimation -- 6.6.2.2 The megasite data -- 6.6.2.3 Updating the characteristic maximum GVW for the Maryland site -- 6.7 Discussion -- References -- Index |
ctrlnum | (ZDB-30-PQE)EBC6794520 (ZDB-30-PAD)EBC6794520 (ZDB-89-EBL)EBL6794520 (OCoLC)1283847714 (DE-599)BVBBV048221027 |
discipline | Bauingenieurwesen Verkehrstechnik |
discipline_str_mv | Bauingenieurwesen Verkehrstechnik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07302nmm a2200505zc 4500</leader><controlfield tag="001">BV048221027</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220516s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000459937</subfield><subfield code="9">978-1-00-045993-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780429318849</subfield><subfield code="9">978-0-429-31884-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6794520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6794520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6794520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1283847714</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048221027</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 725</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 431</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 720</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 846</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 537</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bridge traffic loading</subfield><subfield code="b">from research to practice</subfield><subfield code="c">edited by Eugene OBrien, Andrzej Nowak and Colin Caprani</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 217 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introductory remarks -- 1.2 Design traffic load -- 1.3 Statistical background to bridge loading -- Chapter 2 Vehicles and gross vehicle weight -- 2.1 Categories of vehicle -- 2.2 Truck weight data -- 2.3 Quality Control of traffic data -- 2.4 Variations in WIM data -- 2.5 Bridge load effects -- 2.6 Fatigue damage -- 2.7 Legal limits on vehicle loads -- 2.8 Traffic load factors -- 2.9 Limit states and reliability index -- 2.10 Extrapolation of imposed traffic load effects -- 2.11 Traffic load factors -- Chapter 3 Short-to-medium span bridges -- 3.1 Introduction -- 3.1.1 The physical and statistical phenomenon -- 3.1.2 Load modeling approaches -- 3.1.3 WIM-based load modeling -- 3.2 Traffic data -- 3.2.1 WIM data and recordings -- 3.2.2 WIM data filtering and cleaning -- 3.2.3 Measurement duration and extent -- 3.2.4 Overloaded and permit vehicles -- 3.3 Loading events -- 3.3.1 Direct use of measured WIM data -- 3.3.2 Generation of artificial traffic streams -- 3.3.2.1 Monte Carlo simulation -- 3.3.2.2 Modeling vehicles -- 3.3.2.3 Generating gaps -- 3.3.3 Traffic loading in multiple lanes -- 3.3.3.1 Opposing-direction traffic -- 3.3.3.2 Same-direction traffic -- 3.3.3.3 Scenario modeling -- 3.4 Load effects -- 3.4.1 Influence lines -- 3.4.2 Influence surfaces -- 3.4.3 Load movement -- 3.5 Dynamic interaction -- 3.6 Statistical prediction -- 3.6.1 Prediction of extremes -- 3.6.2 Composite Distribution Statistics -- 3.6.3 The governing form of traffic -- 3.7 Notional Load Models -- 3.7.1 General method -- 3.7.2 Specific considerations -- 3.7.2.1 Design versus assessment -- 3.7.2.2 Load model consistency -- 3.7.2.3 Multi-lane factors -- 3.8 Recommendations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4 Dynamic load allowance -- 4.1 Introduction -- 4.1.1 The phenomenon -- 4.1.2 Basic definitions -- 4.1.3 Factors influencing dynamic amplifications -- 4.2 Codes -- 4.2.1 AASHTO -- 4.2.2 Eurocode -- 4.2.3 Australian Standard -- 4.2.4 Chinese Standard -- 4.3 Statistical approach to dynamics -- 4.3.1 Assessment Dynamic Ratio -- 4.3.2 The shift in probability paper plots due to dynamics -- 4.3.3 The contribution of surface roughness to dynamics -- 4.4 Field measurements -- 4.4.1 History of using Bridge Weigh-in-Motion to estimate dynamic amplification -- 4.4.2 DAF results inferred from Bridge Weigh-in-Motion -- 4.4.2.1 Examples of DAF calculation -- 4.4.2.2 Decrease in DAF with increasing GVW -- 4.5 Conclusions -- Chapter 5 Long-span bridge loading -- 5.1 Introduction -- 5.2 Load models for long-span bridges -- 5.2.1 Development of North American load models -- 5.2.1.1 Ivy et al. (1954) -- 5.2.1.2 Lions Gate simulation studies -- 5.2.1.3 Current AASHTO load model -- 5.2.2 Development of United Kingdom load models -- 5.2.3 Development of other European load models -- 5.2.3.1 Eurocode -- 5.2.3.2 Storebælt East Bridge, Denmark -- 5.2.4 Asian long-span load models -- 5.2.4.1 China -- 5.2.4.2 Japan -- 5.2.4.3 Korea -- 5.3 Modeling long-span traffic loading -- 5.3.1 Traditional approaches -- 5.3.2 Traffic microsimulation -- 5.3.3 Lane changing and types of congested traffic -- 5.3.4 Extreme traffic load effects -- 5.3.5 Conclusions and future directions -- 5.3.5.1 Inter-vehicle gap data and mix of vehicle types -- 5.3.5.2 Load effect calculation -- 5.3.5.3 Influence of truck percentage -- 5.3.5.4 Future developments -- 5.4 Case studies -- 5.4.1 Model and traffic basis -- 5.4.2 Two-pylon cable-stayed bridge -- 5.4.3 Bridges with multiple pylons -- 5.4.3.1 Cable-stayed bridge -- 5.4.3.2 Suspension bridge -- 5.5 Conclusions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6 Factors affecting the accuracy of characteristic maximum load effects -- 6.1 Introduction -- 6.2 Choice of extrapolation method -- 6.2.1 The data -- 6.2.2 Extreme Value theory methods -- 6.2.2.1 Peaks-Over-Threshold -- 6.2.2.2 Block Maximum -- 6.2.2.3 Box-Cox-GEV distribution -- 6.2.3 Tail fitting -- 6.2.3.1 Castillo's approach -- 6.2.3.2 Normal distribution -- 6.2.3.3 Rice's formula -- 6.2.4 Distribution of the prediction -- 6.2.4.1 Bayesian Updating -- 6.2.4.2 Predictive Likelihood -- 6.2.5 Comparative study of extrapolation methods -- 6.2.5.1 Simple Extreme Value problem -- 6.2.5.2 Traffic load effect problem -- 6.2.6 Extrapolation recommendations -- 6.3 The nature of extreme traffic loading events -- 6.3.1 Correlations in same-direction multi-lane traffic -- 6.3.1.1 Simulating trains of truck traffic -- 6.3.2 Consistency of safety in notional load models -- 6.3.2.1 HL-93 - Single-lane bridges -- 6.3.2.2 HL-93 - Two-lane-bridges -- 6.4 Separating standard from non-standard trucks -- 6.4.1 Removing apparent non-standard vehicles from WIM data -- 6.4.2 Modeling non-standard vehicles -- 6.5 Allowing for growth in vehicle weights and frequencies -- 6.5.1 Illustration of non-stationary extremes -- 6.5.2 Influence of growth on bridge traffic load effects -- 6.5.3 Recommendations for considering traffic growth -- 6.6 Traffic loading on secondary road bridges -- 6.6.1 Sources of extreme vehicles -- 6.6.1.1 Standard vehicles -- 6.6.1.2 Non-standard vehicles -- 6.6.2 Bayesian Updating and the 'megasite' concept -- 6.6.2.1 Bayesian Updating and Kernel Density Estimation -- 6.6.2.2 The megasite data -- 6.6.2.3 Updating the characteristic maximum GVW for the Maryland site -- 6.7 Discussion -- References -- Index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Brien, Eugene J.</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)1158454147</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nowak, Andrzej S.</subfield><subfield code="d">1945-</subfield><subfield code="0">(DE-588)1173991395</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Caprani, Colin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-33246-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-10136-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">OBrien, Eugene</subfield><subfield code="t">Bridge Traffic Loading</subfield><subfield code="d">Milton : Taylor & Francis Group,c2021</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-367-41790-1</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033601766</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/munchentech/detail.action?docID=6794520</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">TUM_PDA_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048221027 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:50:32Z |
indexdate | 2024-07-10T09:32:24Z |
institution | BVB |
isbn | 9781000459937 9780429318849 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033601766 |
oclc_num | 1283847714 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM |
owner_facet | DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xvii, 217 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-PQE ZDB-30-PQE TUM_PDA_PQE_Kauf |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | CRC Press |
record_format | marc |
spelling | Bridge traffic loading from research to practice edited by Eugene OBrien, Andrzej Nowak and Colin Caprani First edition Boca Raton ; London ; New York CRC Press 2022 © 2022 1 Online-Ressource (xvii, 217 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introductory remarks -- 1.2 Design traffic load -- 1.3 Statistical background to bridge loading -- Chapter 2 Vehicles and gross vehicle weight -- 2.1 Categories of vehicle -- 2.2 Truck weight data -- 2.3 Quality Control of traffic data -- 2.4 Variations in WIM data -- 2.5 Bridge load effects -- 2.6 Fatigue damage -- 2.7 Legal limits on vehicle loads -- 2.8 Traffic load factors -- 2.9 Limit states and reliability index -- 2.10 Extrapolation of imposed traffic load effects -- 2.11 Traffic load factors -- Chapter 3 Short-to-medium span bridges -- 3.1 Introduction -- 3.1.1 The physical and statistical phenomenon -- 3.1.2 Load modeling approaches -- 3.1.3 WIM-based load modeling -- 3.2 Traffic data -- 3.2.1 WIM data and recordings -- 3.2.2 WIM data filtering and cleaning -- 3.2.3 Measurement duration and extent -- 3.2.4 Overloaded and permit vehicles -- 3.3 Loading events -- 3.3.1 Direct use of measured WIM data -- 3.3.2 Generation of artificial traffic streams -- 3.3.2.1 Monte Carlo simulation -- 3.3.2.2 Modeling vehicles -- 3.3.2.3 Generating gaps -- 3.3.3 Traffic loading in multiple lanes -- 3.3.3.1 Opposing-direction traffic -- 3.3.3.2 Same-direction traffic -- 3.3.3.3 Scenario modeling -- 3.4 Load effects -- 3.4.1 Influence lines -- 3.4.2 Influence surfaces -- 3.4.3 Load movement -- 3.5 Dynamic interaction -- 3.6 Statistical prediction -- 3.6.1 Prediction of extremes -- 3.6.2 Composite Distribution Statistics -- 3.6.3 The governing form of traffic -- 3.7 Notional Load Models -- 3.7.1 General method -- 3.7.2 Specific considerations -- 3.7.2.1 Design versus assessment -- 3.7.2.2 Load model consistency -- 3.7.2.3 Multi-lane factors -- 3.8 Recommendations Chapter 4 Dynamic load allowance -- 4.1 Introduction -- 4.1.1 The phenomenon -- 4.1.2 Basic definitions -- 4.1.3 Factors influencing dynamic amplifications -- 4.2 Codes -- 4.2.1 AASHTO -- 4.2.2 Eurocode -- 4.2.3 Australian Standard -- 4.2.4 Chinese Standard -- 4.3 Statistical approach to dynamics -- 4.3.1 Assessment Dynamic Ratio -- 4.3.2 The shift in probability paper plots due to dynamics -- 4.3.3 The contribution of surface roughness to dynamics -- 4.4 Field measurements -- 4.4.1 History of using Bridge Weigh-in-Motion to estimate dynamic amplification -- 4.4.2 DAF results inferred from Bridge Weigh-in-Motion -- 4.4.2.1 Examples of DAF calculation -- 4.4.2.2 Decrease in DAF with increasing GVW -- 4.5 Conclusions -- Chapter 5 Long-span bridge loading -- 5.1 Introduction -- 5.2 Load models for long-span bridges -- 5.2.1 Development of North American load models -- 5.2.1.1 Ivy et al. (1954) -- 5.2.1.2 Lions Gate simulation studies -- 5.2.1.3 Current AASHTO load model -- 5.2.2 Development of United Kingdom load models -- 5.2.3 Development of other European load models -- 5.2.3.1 Eurocode -- 5.2.3.2 Storebælt East Bridge, Denmark -- 5.2.4 Asian long-span load models -- 5.2.4.1 China -- 5.2.4.2 Japan -- 5.2.4.3 Korea -- 5.3 Modeling long-span traffic loading -- 5.3.1 Traditional approaches -- 5.3.2 Traffic microsimulation -- 5.3.3 Lane changing and types of congested traffic -- 5.3.4 Extreme traffic load effects -- 5.3.5 Conclusions and future directions -- 5.3.5.1 Inter-vehicle gap data and mix of vehicle types -- 5.3.5.2 Load effect calculation -- 5.3.5.3 Influence of truck percentage -- 5.3.5.4 Future developments -- 5.4 Case studies -- 5.4.1 Model and traffic basis -- 5.4.2 Two-pylon cable-stayed bridge -- 5.4.3 Bridges with multiple pylons -- 5.4.3.1 Cable-stayed bridge -- 5.4.3.2 Suspension bridge -- 5.5 Conclusions Chapter 6 Factors affecting the accuracy of characteristic maximum load effects -- 6.1 Introduction -- 6.2 Choice of extrapolation method -- 6.2.1 The data -- 6.2.2 Extreme Value theory methods -- 6.2.2.1 Peaks-Over-Threshold -- 6.2.2.2 Block Maximum -- 6.2.2.3 Box-Cox-GEV distribution -- 6.2.3 Tail fitting -- 6.2.3.1 Castillo's approach -- 6.2.3.2 Normal distribution -- 6.2.3.3 Rice's formula -- 6.2.4 Distribution of the prediction -- 6.2.4.1 Bayesian Updating -- 6.2.4.2 Predictive Likelihood -- 6.2.5 Comparative study of extrapolation methods -- 6.2.5.1 Simple Extreme Value problem -- 6.2.5.2 Traffic load effect problem -- 6.2.6 Extrapolation recommendations -- 6.3 The nature of extreme traffic loading events -- 6.3.1 Correlations in same-direction multi-lane traffic -- 6.3.1.1 Simulating trains of truck traffic -- 6.3.2 Consistency of safety in notional load models -- 6.3.2.1 HL-93 - Single-lane bridges -- 6.3.2.2 HL-93 - Two-lane-bridges -- 6.4 Separating standard from non-standard trucks -- 6.4.1 Removing apparent non-standard vehicles from WIM data -- 6.4.2 Modeling non-standard vehicles -- 6.5 Allowing for growth in vehicle weights and frequencies -- 6.5.1 Illustration of non-stationary extremes -- 6.5.2 Influence of growth on bridge traffic load effects -- 6.5.3 Recommendations for considering traffic growth -- 6.6 Traffic loading on secondary road bridges -- 6.6.1 Sources of extreme vehicles -- 6.6.1.1 Standard vehicles -- 6.6.1.2 Non-standard vehicles -- 6.6.2 Bayesian Updating and the 'megasite' concept -- 6.6.2.1 Bayesian Updating and Kernel Density Estimation -- 6.6.2.2 The megasite data -- 6.6.2.3 Updating the characteristic maximum GVW for the Maryland site -- 6.7 Discussion -- References -- Index O'Brien, Eugene J. 1958- (DE-588)1158454147 edt Nowak, Andrzej S. 1945- (DE-588)1173991395 edt Caprani, Colin edt Erscheint auch als Druck-Ausgabe, Hardcover 978-0-367-33246-4 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-10136-1 Erscheint auch als OBrien, Eugene Bridge Traffic Loading Milton : Taylor & Francis Group,c2021 Druck-Ausgabe 978-0-367-41790-1 |
spellingShingle | Bridge traffic loading from research to practice Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Editors -- Contributors -- Chapter 1 Introduction -- 1.1 Introductory remarks -- 1.2 Design traffic load -- 1.3 Statistical background to bridge loading -- Chapter 2 Vehicles and gross vehicle weight -- 2.1 Categories of vehicle -- 2.2 Truck weight data -- 2.3 Quality Control of traffic data -- 2.4 Variations in WIM data -- 2.5 Bridge load effects -- 2.6 Fatigue damage -- 2.7 Legal limits on vehicle loads -- 2.8 Traffic load factors -- 2.9 Limit states and reliability index -- 2.10 Extrapolation of imposed traffic load effects -- 2.11 Traffic load factors -- Chapter 3 Short-to-medium span bridges -- 3.1 Introduction -- 3.1.1 The physical and statistical phenomenon -- 3.1.2 Load modeling approaches -- 3.1.3 WIM-based load modeling -- 3.2 Traffic data -- 3.2.1 WIM data and recordings -- 3.2.2 WIM data filtering and cleaning -- 3.2.3 Measurement duration and extent -- 3.2.4 Overloaded and permit vehicles -- 3.3 Loading events -- 3.3.1 Direct use of measured WIM data -- 3.3.2 Generation of artificial traffic streams -- 3.3.2.1 Monte Carlo simulation -- 3.3.2.2 Modeling vehicles -- 3.3.2.3 Generating gaps -- 3.3.3 Traffic loading in multiple lanes -- 3.3.3.1 Opposing-direction traffic -- 3.3.3.2 Same-direction traffic -- 3.3.3.3 Scenario modeling -- 3.4 Load effects -- 3.4.1 Influence lines -- 3.4.2 Influence surfaces -- 3.4.3 Load movement -- 3.5 Dynamic interaction -- 3.6 Statistical prediction -- 3.6.1 Prediction of extremes -- 3.6.2 Composite Distribution Statistics -- 3.6.3 The governing form of traffic -- 3.7 Notional Load Models -- 3.7.1 General method -- 3.7.2 Specific considerations -- 3.7.2.1 Design versus assessment -- 3.7.2.2 Load model consistency -- 3.7.2.3 Multi-lane factors -- 3.8 Recommendations Chapter 4 Dynamic load allowance -- 4.1 Introduction -- 4.1.1 The phenomenon -- 4.1.2 Basic definitions -- 4.1.3 Factors influencing dynamic amplifications -- 4.2 Codes -- 4.2.1 AASHTO -- 4.2.2 Eurocode -- 4.2.3 Australian Standard -- 4.2.4 Chinese Standard -- 4.3 Statistical approach to dynamics -- 4.3.1 Assessment Dynamic Ratio -- 4.3.2 The shift in probability paper plots due to dynamics -- 4.3.3 The contribution of surface roughness to dynamics -- 4.4 Field measurements -- 4.4.1 History of using Bridge Weigh-in-Motion to estimate dynamic amplification -- 4.4.2 DAF results inferred from Bridge Weigh-in-Motion -- 4.4.2.1 Examples of DAF calculation -- 4.4.2.2 Decrease in DAF with increasing GVW -- 4.5 Conclusions -- Chapter 5 Long-span bridge loading -- 5.1 Introduction -- 5.2 Load models for long-span bridges -- 5.2.1 Development of North American load models -- 5.2.1.1 Ivy et al. (1954) -- 5.2.1.2 Lions Gate simulation studies -- 5.2.1.3 Current AASHTO load model -- 5.2.2 Development of United Kingdom load models -- 5.2.3 Development of other European load models -- 5.2.3.1 Eurocode -- 5.2.3.2 Storebælt East Bridge, Denmark -- 5.2.4 Asian long-span load models -- 5.2.4.1 China -- 5.2.4.2 Japan -- 5.2.4.3 Korea -- 5.3 Modeling long-span traffic loading -- 5.3.1 Traditional approaches -- 5.3.2 Traffic microsimulation -- 5.3.3 Lane changing and types of congested traffic -- 5.3.4 Extreme traffic load effects -- 5.3.5 Conclusions and future directions -- 5.3.5.1 Inter-vehicle gap data and mix of vehicle types -- 5.3.5.2 Load effect calculation -- 5.3.5.3 Influence of truck percentage -- 5.3.5.4 Future developments -- 5.4 Case studies -- 5.4.1 Model and traffic basis -- 5.4.2 Two-pylon cable-stayed bridge -- 5.4.3 Bridges with multiple pylons -- 5.4.3.1 Cable-stayed bridge -- 5.4.3.2 Suspension bridge -- 5.5 Conclusions Chapter 6 Factors affecting the accuracy of characteristic maximum load effects -- 6.1 Introduction -- 6.2 Choice of extrapolation method -- 6.2.1 The data -- 6.2.2 Extreme Value theory methods -- 6.2.2.1 Peaks-Over-Threshold -- 6.2.2.2 Block Maximum -- 6.2.2.3 Box-Cox-GEV distribution -- 6.2.3 Tail fitting -- 6.2.3.1 Castillo's approach -- 6.2.3.2 Normal distribution -- 6.2.3.3 Rice's formula -- 6.2.4 Distribution of the prediction -- 6.2.4.1 Bayesian Updating -- 6.2.4.2 Predictive Likelihood -- 6.2.5 Comparative study of extrapolation methods -- 6.2.5.1 Simple Extreme Value problem -- 6.2.5.2 Traffic load effect problem -- 6.2.6 Extrapolation recommendations -- 6.3 The nature of extreme traffic loading events -- 6.3.1 Correlations in same-direction multi-lane traffic -- 6.3.1.1 Simulating trains of truck traffic -- 6.3.2 Consistency of safety in notional load models -- 6.3.2.1 HL-93 - Single-lane bridges -- 6.3.2.2 HL-93 - Two-lane-bridges -- 6.4 Separating standard from non-standard trucks -- 6.4.1 Removing apparent non-standard vehicles from WIM data -- 6.4.2 Modeling non-standard vehicles -- 6.5 Allowing for growth in vehicle weights and frequencies -- 6.5.1 Illustration of non-stationary extremes -- 6.5.2 Influence of growth on bridge traffic load effects -- 6.5.3 Recommendations for considering traffic growth -- 6.6 Traffic loading on secondary road bridges -- 6.6.1 Sources of extreme vehicles -- 6.6.1.1 Standard vehicles -- 6.6.1.2 Non-standard vehicles -- 6.6.2 Bayesian Updating and the 'megasite' concept -- 6.6.2.1 Bayesian Updating and Kernel Density Estimation -- 6.6.2.2 The megasite data -- 6.6.2.3 Updating the characteristic maximum GVW for the Maryland site -- 6.7 Discussion -- References -- Index |
title | Bridge traffic loading from research to practice |
title_auth | Bridge traffic loading from research to practice |
title_exact_search | Bridge traffic loading from research to practice |
title_exact_search_txtP | Bridge traffic loading from research to practice |
title_full | Bridge traffic loading from research to practice edited by Eugene OBrien, Andrzej Nowak and Colin Caprani |
title_fullStr | Bridge traffic loading from research to practice edited by Eugene OBrien, Andrzej Nowak and Colin Caprani |
title_full_unstemmed | Bridge traffic loading from research to practice edited by Eugene OBrien, Andrzej Nowak and Colin Caprani |
title_short | Bridge traffic loading |
title_sort | bridge traffic loading from research to practice |
title_sub | from research to practice |
work_keys_str_mv | AT obrieneugenej bridgetrafficloadingfromresearchtopractice AT nowakandrzejs bridgetrafficloadingfromresearchtopractice AT capranicolin bridgetrafficloadingfromresearchtopractice |